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Abstrat

The aim of this work is to advoate the use of multifrational Brownian motion (mBm) as a relevant

model in �nanial mathematis. Multifrational Brownian motion is an extension of frational Brownian

motion where the Hurst parameter is allowed to vary in time. This enables the possibility to aommodate

for varying loal regularity, and to deouple it from long-range dependene properties. While we believe

that mBm is potentially useful in a variety of appliations in �nane, we fous here on a multifrational

stohasti volatility Hull & White model that is an extension of the model studied in [20℄. Using

the stohasti alulus with respet to mBm developed in [47℄, we solve the orresponding stohasti

di�erential equations. Sine the solutions are of ourse not expliit, we take advantage of reently

developed numerial tehniques, namely funtional quantization-based ubature methods, to get aurate

approximations. This allows us to test the behaviour of our model (as well as the one in [20℄) with respet

to its parameters, and in partiular its ability to explain some features of the implied volatility surfae.

An advantage of our model is that it is able both to �t smiles at di�erent maturities, and to take into

aount volatility persistene in a more preise way than in [20℄.

Keywords: Hull & White model, funtional quantization, vetor quantization, Karhunen-Loève, Gaussian

proess, frational Brownian motion, multifrational Brownian motion, white noise theory, S-transform,

Wik-It� integral, stohasti di�erential equations.

Introdution

Volatility in �nanial markets is both of ruial importane and hard to model in an aurate way. It has

been long known that a onstant volatility as in the Blak & Sholes model (see [15, 55℄) is not onsistent

with empirial �ndings, suh as the smile e�et (i.e. the fat that volatility depends on both strike and

maturity of an option). More basially, there is no reason to expet that instantaneous volatility should

be onstant. Sine the late 80's, several models allowing for a varying volatility have appeared. The most

popular ones inlude ARCH models and their generalizations (see [32℄ as well as [36, hap. 20 & 21℄ and

referenes therein) in disrete time, and stohasti volatility models [42, 40℄ and the loal volatility model [29℄

in ontinuous time. The loal volatility model, in partiular, is the only Markov di�usion proess allowing

one to exatly alibrate the marginals of the risk-neutral probability and thus to to reprodue observed

implied volatility smiles. However, this model does not take into aount another well doumented fat:

while stoks do not typially exhibit orrelations, volatility does display long-range orrelations (see, e.g.

[3℄). Stohasti volatility models, in ontrast, are able to inorporate this feature, provided an adequate

driving noise is used. In [20, 19℄, this is performed by using frational integration. More preisely, the model
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onsidered in [20℄ for the dynami of the prie of a risky asset reads as follows:

ß
dSt = µ(t, St)dt+ StσtdWt,
d ln(σt) = θ (µ− ln(σt)) dt+ γdBH

t , σ0 > 0,
(1)

whereW is a Brownian motion and BH
t is an independent frational Brownian motion (fBm) with parameter

H under the historial probability. Setion 2 realls some basi fats about fBm. For now, it su�es to

remind that its inrements display long range dependene when H > 1/2, and that its pointwise Hölder

regularity is almost surely equal to H at all times. Exept when H = 1/2, fBm is not a semi-martingale, and

thus neither will be ln(σt). However, this does not raise any problem: while prie proesses must be semi-

martingales due to absene of arbitrage onstraints (see, e.g. [27℄), suh a requirement need not be imposed

on instantaneous volatility. As explained in [20℄, pries arising from Model (1) are indeed semi-martingales.

A prominent feature of this model is that it is onsistent with the slow deay in the orrelations of

volatility observed in pratie. It also aounts for two features related to the measured smile e�et: the

volatility proess is less persistent in the short term than a standard di�usion, while it is more persistent in

the long run ([19, p. 3℄). We verify this fat in Setion 6 by solving (1) numerially using reently developed

funtional quantization-based ubature methods.

By the very nature of this model, the evolution in time of the smile is governed by the single parameterH .

This does not permit enough �exibility to �t volatility surfaes. In addition, (1) implies that the volatility

has onstant regularity equal to H . We provide in Setion 1 empirial evidene that this is typially not the

ase by analysing reords of S&P 500 and VIX volatility index. In addition, loal regularity estimated on

these data are often smaller than 1/2, thus ruling out the desirable feature of long range dependene if one

insists on using fBm as a model. Although rather suint, the numerial experiments of Setion 1 indiate

that a stohasti proess with varying loal regularity would provide a better �t to volatility.

The main idea of this work is to replae the fBm appearing in (1) with a more general proess alled

multifrational Brownian motion (mBm). This is an extension of fBm where the parameter H is replaed by

a smooth funtion h. By doing so, one obtains a proess that has, at eah time t, pointwise Hölder regularity
equal to h(t), and, no matter the value of h in (0, 1), always display inrements long-range dependene as long

h is not onstant. Thus, replaing fBm by mBm in (1) enables the possibility of �tting the non-stationary

loal regularity of volatility as measured on data, as well as of maintaining long-range dependene properties.

In addition, as we will show from numerial experiments in Setion 6, the model (written in a risk-neutral

setting): 



dFt = FtσtdWt,
d ln(σt) = θ (µ− ln(σt)) dt+ γhd

⋄Bh
t + γσdW

σ
t , σ0 > 0,

d〈W,W σ〉t = ρdt,
(2)

where Bh
t is an mBm, yields shapes of the smile at maturity T that are governed by a weighted average

of the values of the funtion h up to time T : thus, by adequately hoosing h, one may mimi a given implied

volatility surfae more faithfully than with the Hull & White model driven by fBm (1).

In order to give a rigorous meaning to the model above, a stohasti integral with respet to mBm must

be de�ned. Multifrational and frational Brownian motion are not semimartingales, thus lassial It� theory

does not apply to them. At the time [20℄ was written, no theory for integration with respet to fBm was

available yet. Various approahes have been developed sine, based mainly on Malliavin alulus [25, 2℄,

pathwise integrals [65℄, rough paths [24℄, and white noise theory [31, 12, 10℄. As far as mBm is onerned,

we note �rst that the Skohorod integral developed for instane in [2℄ does not seem to be easily adaptable

to mBm, as it would require writing Bh
as a Wiener integral over a �nite interval. This appears to be an

elusive task (see [38, setion 5℄ for details and [16℄ for a related approah). As for the pathwise approah

of [65℄, it extends immediately to the ase of mBm, as it is only relies on the regularity properties of the

ouple integrator - integrand (see [65℄ and [38℄ for more details). However, solving stohasti di�erential

equations (S.D.E.) typially requires H > 1/2 or h(t) > 1/2, whih preludes its use in our ontext. The last

approah, namely the white noise, lends itself naturally to an extension to mBm. In addition, this integral

o�ers several advantages over both the pathwise and Skohorod ones already in the ase of fBm: it allows to

deal with any H ∈ (0, 1); ontrarily to the pathwise integral, it is entred, and probabilisti quantities suh
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as varianes and expetations are easily omputed; furthermore, the white noise integral is a generalization

of the Skohorod one in the ase of fBm, in the sense that if the latter one exists, then so does the former

one, and both oinide [10℄. The white noise-based, or Wik-It�, integral with respet to fBm was developed

in [31, 9, 12℄, and applied to option priing in a frational Blak and Sholes model in [31℄ (suh a frational

Blak and Sholes model raises both �nanial and eonomial issues, see [11, 14℄). It was extended to mBm

in [47℄. This is the theory we will use in order to study preisely our stohasti volatility models.

The reader interested in the links between the Wik-It� and various others integrals with respet to

fBm may onsult [10, Theorem 6.2℄, [56, Proposition 8℄ or [24, Corollary 8℄. About stohasti di�erential

equations driven by fBm in the Wik-It� sense, see [41, 46℄.

While we fous here on the multifrational stohasti volatility model (2) (we also brie�y onsider a

multifrational SABR model with β = 1 in Setion 5.3), we would like to mention that mBm is useful in a

variety of appliations in �nane (see [1℄ for a partial list of artiles dealing with mBm in this �eld).

In order to assess the relevane of our model, we ompute numerially in Setion 6 the smiles at di�erent

maturities. Sine the solution annot be written in an expliit form, we need to resort to approximations.

In our ase, this is made possible by reent advanes in the theory of funtional quantization of Gaussian

proesses.

Funtional quantization of Gaussian proesses has beome an ative �eld of researh in reent years

sine the seminal artile [50℄. As far as appliations are onerned, ubature methods [58, 22℄ and variane

redution methods [23, 48℄ based on funtional quantization have been proposed. However, as the numerial

use of funtional quantizers requires the evaluation of the Karhunen-Loève eigenfuntions, this method was

restrited to proesses for whih a losed-form expression for this expansion is known, suh as Brownian

motion. In [21℄, a numerial method was proposed to perform numerial quadrati funtional quantization

of more general Gaussian proesses, whih will be applied here to multifrational Brownian motion.

We show that we an handle a fast and aurate forward start option priing in this model thanks to a

funtional quantization-based ubature method similar to the one proposed in [58℄ and in [22℄. This allows

us to study the dependeny of the smile dynamis on the funtional parameter of the onsidered mBm.

The remaining of this paper is organized as follows. Setion 1 proposes a short empirial study of the

volatility of the S&P 500, whih shows that its regularity evolves in time. We reall in Setion 2 basi

fats about fBm and mBm. In Setion 3, we explain how to perform funtional quantization of mBm and

investigate the rate of deay of the orresponding quantization error. Quantization-based ubature is also

addressed in this setion. In Setion 4, we provide some bakground on the white noise-based stohasti

integral with respet to mBm. It also shows how to solve simple S.D.E. in this frame and presents general

remarks on the quantization of solutions of S.D.E. A detailed treatment of the multifrational Hull & White

and SABR models is proposed in Setion 5. Numerial experiments, displaying the evolution of pries as a

funtion of strike, as well as onlusions are gathered in Setion 6.

1 A short empirial study of volatility

The aim of this setion is to provide empirial evidene that volatility in �nanial markets is irregular, and

that its loal regularity, as measured by the pointwise Hölder exponent, evolves in time. It is by no means

intended to present a omplete statistial study of volatility, whih is outside the sope of this work.

1.1 Loal regularity and its estimation

Let us �rst reall the de�nition of the pointwise Hölder exponent of a real stohasti proess X whose

trajetories are ontinuous and nowhere di�erentiable. This is the stohasti proess αX de�ned for every t
as

αX(t) = sup

ß
β, lim sup

h→0

|X(t+ h)−X(t)|
|h|β = 0

™
.

When there is no risk of onfusion, we shall write α in plae of αX . If one wants to put this notion to use

in pratie, the �rst problem is of that of estimating α from disrete data. There is a wealth of works dealing
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with this issue. In this study, we shall use the so-alled inrement ratio statisti developed in [7℄. The reader

interested in other estimation methods in this area may onsult the very omplete list of referene in this

artile. Let us just mention here [61℄, whih deals with statistial issues in the frame of a multifrational

stohasti volatility model.

1.2 Experiments with S&P 500 data

The �rst problem we fae is that we wish to estimate the loal regularity of the volatility of stok pries. Suh

a quantity is not diretly observed on the market. We have tested two lassial strategies to obtain volatility

signals. In the �rst one, studied in this subsetion, historial volatility is estimated diretly from high

frequeny reords of pries. The seond approah uses quoted vanilla option pries to obtain an estimation

of the integrated loal volatility, and is dealt with in the next subsetion.

Our raw data in this setion are minute quotes of the S&P 500, reorded from February 2, 2012 to July 23,

2012, whih amounts to a total of 47748 samples. To estimate the historial volatility, we use essentially the

same proedure as in [3℄ (see also referenes therein). More preisely, we �rst ompute the returns by taking

logarithms of di�erenes. We then proess the data to remove the high frequeny market mirostruture

noise using a low-pass �lter. Samples are then grouped into bloks orresponding to a time period of four

hours. The volatility attahed to a blok is then the standard deviation of the �ltered samples ontained in

this blok. See Figure 1 for a graph of the original S&P 500 series along with the estimated volatility. Note

that our estimated historial volatility bears some resemblane with the ones displayed e.g. in [3℄. In both

ases, the volatility appears to be highly irregular.
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Figure 1: S&P 500 minute data (left) and estimated volatility for time periods of four hours (right).

We then estimate the loal regularity of the volatility using the inrement ratio statisti of [7℄, to obtain

the results displayed on Figure 2. As we shall use this regularity as an input for our model below in Setion

6, we need an analytial expression for it. We have thus regressed the raw regularity using a simple sine

funtion, also shown on Figure 2. We denote this regressed funtion

◊�hV olSP , and will use it in our numerial

experiments in Setion 6.

Loal regularity estimated in this way on the volatility of the S&P 500 is learly not onstant in time. It

seems to osillate with a period of roughly six weeks, and ranges approximately between 0.2 and 0.8.

1.3 Experiments with VIX data

Instead of estimating the volatility from raw data as above, another possibility is to use the VIX index,

whih is a popular measure of the implied volatility of the S&P 500 index options. Let us reall some basi

fats about this index.
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Figure 2: Estimated regularity of the volatility of the S&P 500 minute data (blue) and its regression (green).

Consider a �ltration F = (Ft)t∈[0,T ]. We assume that the forward prie of maturity T follows the

dynamis dFt = σtdWt on [0, T ], where W is a standard Brownian motion adapted to F under the risk-

neutral measure and where (σt)t∈[0,T ] is a stohasti proess adapted to F . Applying It�'s lemma, one

gets

E [ln(FT /F0)] = −1

2

∫ T

0

E[σ2
s ]ds.

More generally, at any time t, the onditional expetation E

î∫ t+T

t
σ2
sds
∣∣∣Ft

ó
an be dedued from the loga-

rithmi pro�le, whih an be represented as a ombination of Call and Put payo�s of the same maturity

ln(F/F0) =
F − F0

F0
+

∫ F0

0

(K − F )+
K2

dK −
∫ ∞

F0

(F −K)+
K2

dK.

In pratie, one an approximate this logarithm pro�le by a disrete ombination of available Call and Put

payo�. This is what was done by the Chiago Board Options Exhange to design the VIX volatility index,

whih is an approximation of the one-month variane swap rate of the S&P 500 index

∫ t+τ

t
E[σ2

s |Ft] ds,
where τ is equal to one month (see [18℄ for the preise de�nition of the VIX index). A onvex ombination of

option pries of the preeding and following listed maturities are used to approximate the desired one-month

maturity option pries.

If one assumes that the VIX index is atually equal to the quantity

∫ t+τ

t
E[σ2

s |Ft] ds where σ2
s is the

instantaneous variane of the S&P 500, then it seems intuitively plausible that its pointwise regularity at

time t is 1+min(αvol(t), αvol(t+τ)), sine integration typially amounts to adding one to the loal regularity

(a theoretial justi�ation of this fat is still an open problem). Thus, if estimating αV IX(t) on VIX data

yields a urve ranging in (1, 2) and varying in time, then suh an empirial result would again support the

use of mBm rather than fBm to model volatility.

Figure 3 displays our data, the VIX minute quotes from February 2, 2012 to June 20, 2012 (392865 data

points). As above, we remove the market mirostruture noise by low-pass �ltering these data. In order to

allow for a fair omparison with the previous experiment, we then subsample the series in order to obtain a

four hours time period reord. Finally, we estimate the pointwise regularity using again the inrement ratio

statisti, also shown on Figure 3.

As in the previous subsetion, the estimated pointwise regularity for the volatility seem to learly vary

in time. It ranges between 0.2 and 0.55. Although an osillatory behaviour is less pronouned than in the

previous experiment, it is still apparent.

The graphs above indiate that volatility is indeed irregular, with varying pointwise Hölder exponent. As

a onsequene, it annot be adequately modelled by fBm, sine this proess has onstant regularity, as we
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Figure 3: VIX minute data (left) and estimated regularity for time periods of four hours (right).

reall in the next setion. In ontrast, mBm is able to apture this and other properties of volatility, suh

as long range dependene, as we explain below.

2 Bakground on multifrational Brownian motion

Frational Brownian motion (fBm) [45, 54℄ is a entred Gaussian proess with features that make it a

useful model in various appliations suh as �nanial and teletra� modelling, image analysis and synthesis,

geophysis and more. These features inlude self-similarity, long-range dependene and the ability to math

any presribed onstant loal regularity. Frational Brownian motion depends on a parameter, usually

denoted by H and alled the Hurst exponent, that belongs to (0, 1). Its ovariane funtion RH reads:

RH(t, s) :=
γH
2

Ä
|t|2H + |s|2H − |t− s|2H

ä
,

where γH is a positive onstant. A normalized fBm is one for whih γH = 1. Obviously, when H = 1
2 , fBm

redues to standard Brownian motion. While fBm is a useful model, the fat that most of its properties

are governed by the single number H restrits its appliation in some situations. In partiular, its Hölder

exponent remains the same all along its trajetory. Thus, for instane, long-range dependent fBm, whih

require H > 1
2 , must have smoother paths than Brownian motion. Multifrational Brownian motion [60, 8℄

was introdued to overome these limitations. The basi idea is to replae the real H by a funtion t 7→ h(t)
ranging in (0, 1).

The onstrution of mBm is best understood through the introdution of a frational Brownian �eld. Fix a

positive real T . A frational Brownian �eld on [0, T ]×(0, 1) is a Gaussian �eld, denoted (B(t,H))(t,H)∈[0,T ]×(0,1),

suh that for everyH in (0, 1) the proess (BH
t )t∈[0,T ], where B

H
t := B(t,H), is a frational Brownian motion

with Hurst parameter H .

For a deterministi ontinuous funtion h : [0, T ] → (0, 1), we all multifrational Brownian motion with

funtional parameter h the Gaussian proess Bh := (Bh
t )t∈[0,T ] de�ned by Bh

t := B(t, h(t)). We say that

h is the regularity funtion of the mBm. The frational �eld (B(t,H))(t,H)∈[0,T ]×(0,1) is termed normalized

when, for all H in (0, 1), (BH
t )t∈[0,T ] is a normalized fBm. In this ase we will also say that Bh

is normalized.

In order for mBm to posses interesting properties, we need some regularity of B(t,H) with respet to H .

More preisely, we will always assume that B(t,H) satis�es the following ondition:

∀T ∈ R
∗
+, ∀[c, d] ⊂ (0, 1), ∃(Λ, δ) ∈ (R∗

+)
2
suh that

E[(B(t,H)−B(t,H ′))2] ≤ Λ |H −H ′|δ for every (t,H,H ′) in [0, T ]× [c, d]2.
(H)
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Under this assumption, and if the funtional parameter h is ontinuous, then the assoiated mBm has a

ontinuous modi�ation.

The lass of mBm is rather large, sine there is some freedom in hoosing the orrelations between the fBms

omposing the frational �eld B. For de�niteness, we will mostly onsider in this work the so-alled �well-

balaned� multifrational Brownian motion. Essentially the same analysis ould be onduted with other

versions. More preisely, a well-balaned mBm is obtained from the �eld B(t,H) := 1
cH

∫
R

eitu−1
|u|H+1/2 W̃ (du)

where W̃ denotes a omplex-valued Gaussian measure (f. [63℄ for more details).

We show in Proposition 3.5 that assumption (H) is satis�ed by the well-balaned frational Brownian �eld

(in fat, it is veri�ed by all mBms onsidered so far in the literature).

The proof of the following proposition an be found in [4℄:

Proposition 2.1 (Covariane funtion of well-balaned mBm). The ovariane funtion Rh of well-balaned

mBm is given by

Rh(t, s) =
c2ht,s

ch(t)ch(s)

Å
1

2

(
|t|2ht,s + |s|2ht,s − |t− s|2ht,s

)ã
, (3)

where ht,s :=
h(t)+h(s)

2 and cx :=

Å
2π

Γ(2x+1) sin(πx)

ã 1
2

.

The other main properties of mBm are as follows: the pointwise Hölder exponent at any point t of B(h)
is

almost surely equal to h(t)∧βh(t), where βh(t) is the pointwise Hölder exponent of h at t [39℄. For a smooth

h, one thus may ontrol the loal regularity of the paths by the value of h. In addition, the inrements of

mBm display long range dependene for all non-onstant h(t) [4℄. Finally, when h is C1
, mBm is tangent to

fBm with exponent h(u) in the neighbourhood of any u in the following sense [33℄:

®
Bh

u+rt −Bh
u

rh(u)
; t ∈ [a, b]

´
law−−−−→

r→0+
{Bh(u)

t ; t ∈ [a, b]}.

These properties show that mBm is a more versatile model that fBm: in partiular, it is able to mimi in

a more faithful way loal properties of �nanial reords, Internet tra� and natural landsapes [13, 49, 30℄

by mathing their loal regularity. This is important e.g. for purposes of detetion or real-time ontrol. The

prie to pay is of ourse that one has to deal with the added omplexity brought by having a funtional

parameter instead of a single number.

In general, the inrements of multifrational Brownian motion are neither independent nor stationary. Sine

an mBm Bh
is an fBm of Hurst index H when h is onstant and equal to H , there is no risk of onfusion by

denoting BH
the frational Brownian motion with Hurst index H .

We end this paragraph by noting that the use of a frational Brownian �eld permits further generaliza-

tions: for instane, a multifrational proess with random exponent is de�ned in [6℄, and a self-regulating

proess is onsidered in [30℄.

3 Funtional quantization of multifrational Brownian motion

In this setion, we �rst present some bakground on funtional quantization and the numerial methods

used to obtain the quadrati optimal produt quantization of mBm. We provide some numerial results in

the speial ase of the well-balaned multifrational Brownian motion for ertain examples of the funtional

parameter h. Then, in Setion 3.2, we investigate the rate of deay of the quantization error for mBm.

Setion 3.3 presents the funtional quantization-based ubature formulas that we use to devise a numerial

sheme for the omputation of option pries in the proposed multifrational stohasti volatility model.
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3.1 Computation of the quantization

The quantization of a random variable X valued in a re�exive separable Banah spae (E, | · |) onsists in its

approximation by a random variable Y that is measurable with respet to X and that takes �nitely many

values in E. The resulting error of the disretization is usually measured by the Lp
norm of the di�erene

|X − Y |. If we settle on a �xed maximum ardinal N for Y (Ω), the minimization of the error redues to the

following optimization problem:

min
¶∥∥ |X − Y |

∥∥
p
, Y : Ω → E measurable with respet to X, card(Y (Ω)) ≤ N

©
. (4)

As Y is supposed to be measurable with respet to X , there exists a Borel map Proj : E → E valued

in a �nite subset Γ of E suh that Y = Proj(X). The �nite subset Γ is alled the odebook. Hene if

Γ = {γ1, · · · , γN}, there exists a Borel partition C = {C1, · · · , CN} of E suh that Proj =
N∑
i=1

γi1Ci . In

other words, Proj performs the proess of mapping the ontinuous set X(Ω) to the �nite set Γ. Let ProjΓ
denote a nearest neighbour projetion on Γ. Clearly,

|X − ProjΓ(X)| ≤ |X − Proj(X)| so that

∥∥|X − ProjΓ(X)|
∥∥
p
≤
∥∥|X − Proj(X)|

∥∥
p
.

Hene, in order to minimize the quantization error, it is optimal to use a nearest neighbour projetion on

the odebook Γ. A solution of (4) is alled an Lp
-optimal quantizer of X . An elementary property of an

L2
-optimal quantizer is stationarity: E[X |Y ] = Y . We denote by EN,p(X, | · |) the minimal Lp

quantization

error for the random variable X and the norm | · |:

EN,p(X, | · |) = min
¶∥∥|X − Y |

∥∥
p
, Y measurable with respet to X and |Y (Ω)| ≤ N

©

We now assume that X is a bi-measurable stohasti proess on [0, T ] verifying
∫ T

0
E
[
|Xt|2

]
dt < ∞,

that we see as a random variable valued in the Hilbert spae H = L2([0, T ]). Suppose that its ovariane

funtion ΓX
is ontinuous. In [50℄, it is shown that, in the entred Gaussian ase, linear subspaes U of H

spanned by N -stationary quantizers orrespond to prinipal omponents of X , in other words, are spanned

by eigenvetors of the ovariane operator of X . Thus, the quadrati optimal quantization of Gaussian

proesses onsists in using its Karhunen-Loève deomposition

(
eXn , λ

X
n

)
n≥1

.

To perform optimal quantization, the Karhunen-Loève expansion is �rst trunated at a �xed orderm and then

the R
m
-valued Gaussian vetor onstituted of the m �rst oordinates of the proess on its Karhunen-Loève

deomposition is quantized. To reah optimal quantization, we have to determine both the optimal rank

of trunation dX(N) (the quantization dimension) and the optimal dX(N)-dimensional Gaussian quantizer

orresponding to the �rst oordinates,

dX(N)⊗
j=1

N
(
0, λXj

)
. We have the following representation of the quadrati

distortion EN (X) := EN,2

(
X, | · |L2([0,T ])

)
:

EN(X)2 =
∑

j≥m+1

λXj + EN
(

m⊗

j=1

N
(
0, λXj

)
)2

.

From a numerial viewpoint, we are thus onfronted on the one hand with the �nite-dimensional quan-

tization of the Gaussian distribution

m⊗
j=1

N
(
0, λXj

)
and on the other hand with the numerial evaluation

of the �rst Karhunen-Loève eigenfuntions

(
eXn
)
1≤n≤dX(N)

. Various numerial algorithms have been devel-

oped to deal with the �rst point. Let us mention Lloyd's algorithm and the Competitive Learning Vetor

Quantization (CLVQ). A review of these methods is available in [57℄. As far as the evaluation of the �rst

Karhunen-Loève eigenfuntions is onerned, losed-expressions are available for standard Brownian motion,

8



standard Brownian bridge and Ornstein-Uhlenbek proess. Other examples of expliit Karhunen-Loève ex-

pansions may be found in [26℄ and [62℄. In the general ase, the so-alled Nyström method for approximating

the solution of the assoiated integral equation may be used. It reads

∫ T

0

ΓX(·, s)eXk (s)ds = λXk e
X
k , k ≥ 1, (5)

where both the eigenvalues and the eigenvetors have to be determined. The Nyström method relies on

the use of a quadrature sheme to approximate the integral, so that it turns into a matrix eigensystem.

When dealing with the midpoint quadrature rule, and for su�iently regular kernels ΓX
, the error admits

an asymptoti expansion in the form of the sum of even powers of the step size, for both the eigenvalues

and the eigenfuntions. We take advantage of this asymptoti expansion by using Rihardson-Romberg

extrapolation methods. This method has been benhmarked against the Karhunen-Loève eigensystems of

standard Brownian motion, Brownian bridge and Ornstein-Uhlenbek proess in [21℄.

Instead of using an optimal quantization for the distribution

dX(N)⊗
j=1

N
(
0, λXj

)
, another possibility is to

use a produt quantization, that is to use the Cartesian produt of the optimal quadrati quantizers of the

standard one-dimensional Gaussian distributions N
(
0, λXj

)
1≤j≤dX (N)

. In the ase of independent marginals,

this yields a stationary quantizer, i.e. a quantizer Y of X whih satis�es E[X |Y ] = Y . This property, shared
with optimal quantizers, results in a onvergene rate of a higher order for the quantization-based ubature

sheme, as explained in [58℄. An advantage of this approah is that one-dimensional Gaussian quantization

is a fast proedure.

In [57℄, deterministi optimization methods (e.g. Newton-Raphson) are shown to onverge rapidly to the

unique optimal quantizer of the one-dimensional Gaussian distribution. A sharply optimized database of

quantizers of standard univariate and multivariate Gaussian distributions is available for download on the

web site [59℄, whih is devoted to optimal quantization. One still has to determine the quantization level

for eah dimension to obtain optimal produt quantization. In this ase, the minimization of the distortion

beomes:

Ä
EprodN (X)

ä2
:= min





d∑

j=1

E2
Nj

(
N
(
0, λXj

))
+
∑

j≥d+1

λXj , N1 × · · · ×Nd ≤ N, d ≥ 1



 . (6)

A solution of (6) is alled an optimal K-L produt quantizer. This problem an be solved by the �blind

optimization proedure�, whih onsists in omputing the riterion for every possible deompositionN1×· · ·×
Nd with N1 ≥ · · · ≥ Nd. The result of this proedure an be stored for future use. Optimal deompositions

for a wide range of values of N for both Brownian motion and Brownian bridge are available on the web site

[59℄. Another fat on quadrati funtional produt quantization is that it is shown to be rate-optimal under

ertain assumptions on the K-L eigenvalues (see Theorem 3.1).

Quadrati produt quantizers of fBms and well-balaned mBms for di�erent H and h are displayed on

Figures 4 and 5. A �xed produt deomposition is used for simpliity.

These graphs re�et, to some extent, the features of the quantized proess, in partiular its orrelation

and regularity properties:

In the ase of fBm (Figure 4), when H inreases, the rate of deay of the Karhunen-Loève eigenvalues

also inreases (and so does the pathwise Hölder regularity of the underlying proess), so that even though we

do not hange the quantization dimension in this example, the ontribution of higher-order Karhunen-Loève

eigenvalues dereases. In Figure 4, one an see that the urves of the funtional quantizer loalize around

the quantization of the �rst Karhunen-Loève oordinate when H = 0.75, while this is not the ase when

H = 0.25.

In addition, the distribution of the urves on the plane is related to the fat that the almost sure Hausdorf

dimension of the paths of fBm is 2-H: for small H , we expet the set of urves to be more spae-�lling than

9
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Figure 4: Quadrati 5× 2× 2-produt quantizer of fBm on [0, 1] with H = 0.25 (left) and H = 0.75 (right).
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Figure 5: Quadrati 5× 2 × 2-produt quantizer of mBm on [0, 1] with h(t) := 0.1 + 0.8t (left) and h(t) :=
0.9− 0.8t (right).

for large H , a feature that an be indeed be veri�ed on the �gure. In addition, the long-term orrelation of

fBm for H > 1/2, whih results in paths typially having strong trends, translates here into urves whih are

roughly monotonous. Conversely, the negative orrelations whih haraterizes the ase H < 1/2 is re�eted
in the more osillatory behaviour of the urves in the left pane.

The ase of mBm (Figure 5) makes even learer the relation between the properties of the proess and

the optimal quantizer. In the right pane of Figure 5, the funtion h dereases linearly from 0.9 to 0.1. One
an see that, for small t, both the distribution of the urves and their trend look like the ones of fBm with

large H . As t inreases, the urves beome more spae-�lling and osillatory, in agreement with the fat

that, for t lose to 1, the orresponding mBm has larger loal Hausdor� dimension. Similar remarks hold

for the ase where h is an inreasing funtion (right pane of Figure 5).

Another way of interpreting these �gures is to reall that mBm is tangent, at eah t, to fBm with exponent

H = h(t). The behaviour of the urves on Figure 5 is a translation of this fat in the quantization domain.

Finally, note that the shape of the onvex envelopes in eah of the four �gures roughly mathes the time

evolution of the varianes of the orresponding proesses, i.e. t0.25, t0.75, t0.1+0.8t
and t0.9−0.8t

.
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3.2 Rate of deay of the quantization error for mBm

The rate of deay of the quadrati funtional quantization error was �rst investigated in [50℄. More preise

results were then established in [51℄. These results rely on assumptions on the asymptoti behaviour of

the Karhunen-Loève eigenvalues of the onsidered proess. In Subsetion 3.2.1, we reall the main result

involving the rate of deay of these eigenvalues, leading to sharp rates of onvergene for the quantization

of fBm.

Unfortunately, suh asymptotis for the Karhunen-Loève eigenvalues are not known at this time in the

ase of mBm. However, sine the regularity of mBm is known, one may use another, less preise, type of

results: these yield an upper estimate on the rate of deay of the quantization error [53℄. This is explained

in Subsetion 3.2.2.

In the following, for two positive sequenes (xn)n∈N and (yn)n∈N, we write xn ∼
n→∞

yn if lim
n→∞

xn

yn
= 1. The

symbol xn .
n→∞

yn means that lim
n→∞

xn

yn
≤ 1. Finally, xn ≍

n→∞
yn means that xn = O(yn) and yn = O(xn)

as n→ ∞.

3.2.1 Sharp rates based on asymptotis of Karhunen-Loève eigenvalues

Reall the following well-known de�nition:

De�nition 1 (Regularly varying funtion at in�nity). A measurable funtion φ : (s,∞) → (0,∞), (s > 0)

is regularly varying at in�nity with index b ∈ R if for every t > 0, lim
x→∞

φ(tx)
φ(x) = tb.

Let X be a bi-measurable entred Gaussian proess on [0, T ] with a ontinuous ovariane funtion ΓX
and

suh that

∫ T

0
E[X2

s ]ds <∞. Denote by

(
eXn , λ

X
n

)
n≥1

its Karhunen-Loève eigensystem.

Theorem 3.1 (Quadrati quantization error asymptotis [51℄). Assume that λXn ∼ φ(n) as n → ∞, where

φ : (s,∞) → (0,∞) is a dereasing regularly varying funtion of index −b < −1 and s > 0. Set ψ(x) := 1
xφ(x) .

Then

EN (X) ∼
ÇÅ

b

2

ãb−1 b

b− 1

å1/2

ψ(log(N))−1/2
as N → ∞.

Moreover, the optimal produt quantization dimension mX(N) veri�es mX(N) ∼ 2
b log(N) as N → ∞,

and the optimal produt quantization error EprodN (X) of level N satis�es

EprodN (X) .

ÇÅ
b

2

ãb−1 b

b− 1
+ C(1)

å1/2

ψ(log(N))−1/2
as N → ∞,

where C(1) is a universal positive onstant.

Though the optimal produt quantization is not asymptotially optimal, it still provides a rate-optimal

sequene of quantizers. In the ase where b = 1, a similar result is true, with the additional property that

the optimal produt quantization does yield an asymptotially optimal quadrati quantization error.

The ase of frational Brownian motion

In [50, 17℄, it is shown that the Karhunen-Loève eigenvalues of fBm on [0, T ] verify

λB
H

n ∼ νH
n2H+1

as n→ ∞,

where νH is a positive onstant. Thus, fBm satis�es the hypotheses of Theorem 3.1 and

EN
(
BH
)
∼ KH

log(N)H
as N → ∞ for some KH > 0, and EprodN

(
BH
)
≍ 1

log(N)H
as N → ∞.
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3.2.2 Mean regularity and domination of the funtional quantization rate

We reall the de�nition of regular variation at 0:

De�nition 2 (Regularly varying funtion at zero). A measurable funtion φ : (0, s) → (0,∞), (s > 0) is

regularly varying at 0 with index b ≥ 0 if for every t > 0, lim
x→0

φ(tx)
φ(x) = tb.

De�nition 3 (The φ-Lipshitz assumption). Let X be a bi-measurable proess on [0, T ]. We say that X
satis�es the φ-Lipshitz assumption for ρ > 0, whih we denote by (Lφ,ρ), if there is a non-dereasing funtion
φ : R+ → [0,∞], ontinuous at 0 with φ(0) = 0, suh that

(Lφ,ρ) ≡





∀(s, t) ∈ [0, T ]2,E [|Xt −Xs|ρ] ≤ (φ(|t − s|))ρ , if ρ ≥ 1

∀t ∈ [0, T ], ∀h ∈ (0, T ],E

ñ
sup

t≤s≤(t+h)∧T

|Xs −Xt|ρ
ô
≤ (φ(h))

ρ
if 0 < ρ < 1.

Remark 1. The φ-Lipshitz assumption implies that E

î
|X |ρLρ([0,T ])

ó
< ∞ so that P-almost surely, t 7→ Xt

lies in Lρ([0, T ]).

Theorem 3.2 (Mean regularity and quantization rate). Let X be a bi-measurable proess on [0, T ] suh that

Xt ∈ Lρ
for every t ∈ [0, T ], ρ > 0. Assume that X satis�es (Lφ,ρ) where φ is regularly varying at 0 with

index b. Then

∀(r, p) ∈ [0, ρ]2, EN,r

(
X, | · |Lp([0,T ])

)
≤ Cr,p

ß
φ(1/ log(N)), if b > 0,
ψ(1/ log(N)), if b = 0,

with ψ(x) :=
(∫ x

0
(φ(ξ))(r∧1)

ξ dξ
) 1

r∧1

, assuming in addition that

∫ x

0
(φ(ξ))(r∧1)

ξ dξ <∞ if b = 0.

In partiular, if φ(u) = cub, b > 0, then

EN,r

(
X, | · |Lp([0,T ])

)
= O(log(N)−b).

The ase of multifrational Brownian motion

Reall that a funtion h is said to be β-Hölder ontinuous (with β > 0) if there exists η in R
∗
+ suh that,

forall (s, t) in [0, T ]2, |h(s)− h(t)| ≤ η |s− t|β .

Theorem 3.3 (L2
-mean regularity of multifrational Brownian motion). Let Bh

be an mBm with funtional

parameter h satisfying assumption (H). Assume that h is β-Hölder ontinuous, then there exists a positive

onstant M suh that

∀(s, t) ∈ [0, T ]2, E

[(
Bh

t −Bh
s

)2] ≤M |t− s|
(
2 inf

u∈[0,T ]
h(u)∧βδ

)
, (7)

where δ is given in assumption (H).

Proof: We may assume that the frational �eld (B(t,H))(t,H)∈[0,T ]×[c,d] is normalized. For (t, s) in [0, T ]2:

E

[(
Bh

t −Bh
s

)2] ≤ 2 E

î
(B(t, h(t))−B(s, h(t)))2

ó
+ 2 E

î
(B(s, h(t)) −B(s, h(s)))2

ó

≤ 2
Ä
|t− s|2h(t) + Λ |h(t)− h(s)|δ

ä
≤ 2
Ä
|t− s|2H1 (1 + T 2(H2−H1)) + Λ ηβ |t− s|βδ

ä

≤ 2 (1 + T 2(H2−H1)) (1 + Λ ηβ)
(
|t− s|2H1 + |t− s|βδ

)
≤M |t− s|2H1∧βδ,

where H1 := inf
u∈[0,T ]

h(u), H2 := sup
u∈[0,T ]

h(u) and M := 2(1 + T 2(H2−H1)) (1 + T 2H1∨βδ−2H1∧βδ) (1 + Λ ηβ).�
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Corollary 3.4 (Upper bound on the quantization error for multifrational Brownian motion). With the

same notations and assumptions as in Theorem 3.3:

EN,r

(
Bh, | · |Lp([0,T ])

)
= O

Ä
log(N)−(H1∧ βδ

2 )
ä
,

for every (r, p) in (R+)
2
.

Proof: Sine Bh
is a Gaussian proess, Theorem 3.3 shows that Bh

ful�ls the φ-Lipshitz assumption for

every integer ρ of the form ρ := 2p where p is a positive integer and for the ontinuous funtion φρ de�ned

on R+ by φρ(0) := 0 and φρ(x) := (κρ/2)
1/2ρ

√
M xH1∧ βδ

2
. We have denoted, for n in N, κn the number

suh that E
[
Y 2n

]
= κn E

[
Y 2
]n

for the entred Gaussian random variable Y . It is lear that φρ is regularly

varying with index H1 ∧ βδ
2 , whih is positive. The result then follows from Theorem 3.2. �

Remark 2. Corollary 3.4 extends to every proess V h := (V h
t )t∈[0,T ], of the form V h

t := Z(t, h(t)) where

Z := (Z(t,H))(t,H)∈R×[H1,H2] is a Gaussian �eld suh that one an �nd (Λ, γ, δ) in (R∗
+)

3
with

∀(s, t,H,H ′) ∈ [0, T ]2 × [H1, H2]
2, E

î(
Z(t,H)− Z(s,H ′)

)2ó ≤ Λ (|t− s|γ + |H −H ′|δ),

In this ase, for every (r, p) in (R∗
+)

2
, we get EN,r

(
V h, | · |Lp([0,T ])

)
= O

(
log(N)−(

γ
2∧

βδ
2 )
)
.

Proposition 3.5. The well-balaned mBm Bh
t := 1

ch(t)

∫
R

eitξ−1
|u|h(t)+1/2 W̃ (dξ) satis�es assumption (H).

Proof: One omputes:

IH,H′

t := E

î
(B(t,H)−B(t,H ′))

2
ó
=

∫

R

∣∣∣∣
eitξ − 1

cH |ξ|H+1/2
− eitξ − 1

cH′ |ξ|H′+1/2

∣∣∣∣
2

du

=

∫

R

∣∣∣∣
eitξ − 1

ξ

∣∣∣∣
2 ∣∣∣ 1

cH
|ξ|1/2−H − 1

cH′
|ξ|1/2−H′

∣∣∣
2
dξ. (8)

For every ξ in R
∗
, the map fξ : [c, d] → R+, de�ned by fξ(H) := 1

cH
|ξ|1/2−H

is C1
sine H 7→ cH is C1

on

(0, 1). Thus there exists a positive real D suh that

∀(ξ,H) ∈ R
∗ × [c, d], |f ′

ξ(H)| ≤ D |ξ|1/2−H (1 + | ln(|ξ|)|) ≤ D
Ä
|ξ|1/2−c + |ξ|1/2−d

ä
(1 + | ln(|ξ|)|).

Thanks to the mean-value theorem, (8) yields

IH,H′

t ≤ D2 |H −H ′|2
∫

R

|eitξ − 1|2
|ξ|2

Ä
|ξ|1/2−c + |ξ|1/2−d

ä2
(1 + | ln(|ξ|)|)2 dξ

≤ D2 |H −H ′|2
Ç
23
∫

|ξ|>1

(1 + | ln(|ξ|)|)2
|ξ|1+2c

dξ + (2t)2
∫

|ξ|≤1

|ξ|1−2d (1 + | ln(|ξ|)|)2 dξ
å

≤ (23 + T 2) D2

Ç ∫

|ξ|>1

(1 + | ln(|ξ|)|)2
|ξ|1+2c

dξ +

∫

|ξ|≤1

|ξ|1−2d (1 + | ln(|ξ|)|)2 dξ
å

|H −H ′|2.

Sine the two integrals in the last line are �nite, (H) is veri�ed with δ = 2. �

Remark 3 (Quantization error and small ball probability). In the ase of Gaussian measures, upper bounds

and lower bounds of the quantization error an be related to lower and upper bounds for small ball probabilities

respetively [28℄, and a onverse relationship was obtained in [34℄. As a onsequene, the knowledge of

logarithmi small ball asymptotis gives asymptotis for the quantization error. Let us mention that tight

asymptotis of the L∞
small ball probability were obtained for a speial ase of multifrational Brownian

motion in [5℄.
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3.3 Quantization-based ubature

In this setion, we �rst reall the error bounds on quantization-based ubature formulas. We then handle

the ase of exponentials of ontinuous entred Gaussian proesses.

3.3.1 Basi formula and related inequalities in the ase of Lipshitz ontinuous funtionals

The idea of quantization-based ubature methods is to approximate the distribution of the random variable

X by the distribution of a quantizer Y of X . As Y is a disrete random variable, we have PY =
N∑
i=1

piδyi .

Therefore, if F : E → R is a Borel funtional,

E[F (Y )] =

N∑

i=1

piF (yi). (9)

Hene, the weighted disrete distribution (yi, pi)1≤i≤N of Y allows us to ompute the sum (9). We review

some error bounds that an be derived when approximating E[F (X))] by (9). See [58℄ for more details.

1. If X ∈ L2
, Y a quantizer of X of size N and F is Lipshitz ontinuous, then

|E[F (X)]− E[F (Y )]| ≤ [F ]
Lip

‖X − Y ‖2. (10)

where [F ]
Lip

is the Lipshitz onstant of F . In partiular, if (YN )N≥1 is a sequene of quantizers suh

that lim
N→∞

‖X − YN‖2 = 0, then the distribution

N∑
i=1

pNi δxN
i

of YN weakly onverges to the distribution

PX of X as N → ∞.

2. If Y is a stationary quantizer of X, i.e. Y = E[X |Y ], and F is di�erentiable with a Lipshitz ontinuous

derivative DF , then
|E[F (X)]− E[F (Y )]| ≤ [DF ]

Lip

‖X − Y ‖22, (11)

where [DF ]
Lip

is the Lipshitz onstant of DF . If F is twie di�erentiable and D2F is bounded, then

we an replae [DF ]
Lip

by

1
2‖D2F‖∞.

3. If F is a semi-ontinuous onvex funtional and Y is a stationary quantizer of X,

E[F (Y )] ≤ E[F (X)]. (12)

This is a simple onsequene of Jensen's inequality. Indeed,

E[F (Y )]
Stationarity

= E[F (E[X |Y ])]
Jensen

≤ E[E[F (X)|Y ])] = E[F (X)].

Remark 4. In the in�nite-dimensional ase, onvexity does not imply ontinuity. In in�nite-dimensional

Banah spaes, a semi-ontinuity hypothesis is neessary for Jensen's inequality whih is the reason why we

had to make this additional hypothesis on F . See [64℄ for more details.

3.3.2 The ase of exponentials of ontinuous entred Gaussian proesses

Let (Xs)s∈[0,T ] be a ontinuous entred Gaussian proess on [0, T ]. Then the ovariane funtion of X is

also ontinuous. In addition, Fernique's theorem entails that E

î∫ T

0
X2

sds
ó
is �nite. We view X as a random

variable valued in the separable Banah spae (C([0, T ],R), ‖ · ‖∞). Let “X be a stationary quantizer of X .

14



By the mean-value theorem, for all (x, y) ∈ R
2, |ex − ey| ≤ e|x|+|y||x− y|. Consequently, for p ≥ 1, using

Hölder's inequality:

E

[∫ T

0

∣∣∣eXs − eX̂s

∣∣∣
p

ds
]1/p

≤ E

ï∫ T

0
e
p|Xs|+p

∣∣X̂s

∣∣ ∣∣∣Xs − “Xs

∣∣∣
p
ds

ò1/p

≤ E

ï∫ T

0
epp̃|Xs|epp̃

∣∣X̂s

∣∣
ds

ò 1
2pp̃

E

ï∫ T

0

∣∣∣Xs − “Xs

∣∣∣
pq̃

ds

ò 1
2pq̃

,

where (p̃, q̃) ∈ (1,∞)2 are onjugate exponents. For ǫ > 0, we hoose (p̃, q̃) suh that pq̃ = p+ ǫ. This gives

q̃ = 1 + ǫ/p and p̃ = 1 + p/ǫ.

By Shwarz's inequality:

E

ñ∫ T

0

∣∣∣eXs − eX̂s

∣∣∣
p

ds

ô1/p
≤ E

ñ∫ T

0

e2pp̃|Xs|ds

ô 1
2pp̃

E

ñ∫ T

0

e
2pp̃
∣∣X̂s

∣∣
ds

ô 1
2pp̃ ∥∥∥X − “X

∥∥∥
p+ǫ

.

De�ne the map φ : C([0, T ],R) → C([0, T ],R) by φ(f) :=
∫ T

0
e2pp̃|f(s)|ds. It is easily shown that φ is onvex

and ontinuous on (C([0, T ],R), ‖ · ‖∞). Hene, Inequality (12) yields

E

ñ∫ T

0

e
2pp̃
∣∣X̂s

∣∣
ds

ô
≤ E

ñ∫ T

0

e2pp̃|Xs|ds

ô
.

Finally

E

ñ∫ T

0

∣∣∣eXs − eX̂s

∣∣∣
p

ds

ô1/p
≤ E

ñ∫ T

0

e2pp̃|Xs|ds

ô 1
pp̃

︸ ︷︷ ︸
<∞

∥∥∥X − “X
∥∥∥
p+ǫ

. (13)

We shall apply (13) with p = 2 − ǫ in Setion 5.2: this will allow us to ontrol the L2−ǫ
quantization

error of the exponential of a entred ontinuous Gaussian proess X by the L2
quantization of X .

3.3.3 Rihardson-Romberg extrapolation

The auray of quantization-based ubature formulas an be dramatially improved by the use of Rihardson-

Romberg extrapoltion methods, with respet to the quantization error, of with respet to the quantization

level. Here is a brief presentation of these methods.

With respet to the quantization error

In the general setting of a non-uniform random variableX , a quadrati optimalN -quantizer YN of X and a C1

funtional with Lipshitz ontinuous derivative, Equation (11) does not provide a true asymptoti expansion

whih would allow one to use a Rihardson-Romberg expansion, but it suggests the use a higher-order Taylor

expansion of F (X)− F (YN ) to get one.

It follows from Taylor's formula that there exists a vetor ζ ∈ [X,YN ] suh that

E[F (X)] = E [F (YN )] + E [〈DF (YN ), X − YN 〉]︸ ︷︷ ︸
=E[DF (YN ).E[X−YN |YN ]]=0 by stationarity.

+ 1
2E
[
D2F (YN )(X − YN )⊗2

]

+ 1
6E
[
ζ(X − YN )⊗3

]
+ o

(
E
[
|X − YN |3

])

= E [F (YN )] + 1
2E
[
D2F (YN )(X − YN )⊗2

]
+O
Ä
E

î
|X − YN |3

óä
.

(14)
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In [35℄, it is proved that the asymptotis of the Ls
quantization error indued by a sequene of Lr

-optimal

quantizers remains rate-optimal in the ase of probability distributions on R
d
, with s < r + d for a lass of

distributions inluding the Gaussian distribution. This leads to E
[
|X − YN |3

]
= O

(
E
[
|X − YN |2

] 3
2

)
. This

holds e.g. for Brownian motion.

Unfortunately, no sharp equivalene between ‖X − YN‖22 and E
[
D2F (YN )(X − YN )⊗2

]
has been estab-

lished yet. Still, Equation (14) suggests to use a Rihardson-Romberg extrapolation with respet to the

quantization error E
2
N := ‖X − YN‖2. The two-steps extrapolation between N = k and N = l leads to

approximate E[F (X)] by the quantity

E[F (Yl)]E
2
k − E[F (Yk)]E

2
l

E2
k − E2

l

. (15)

Although this kind of Rihardson-Romberg extrapolation has not reeived a full theoretial justi�ation yet,

it does dramatially inrease the e�ieny of quantization-based ubature formulas.

With respet to the quantization level

When the value of E
2
k is not known, one may rely on an asymptoti expansion with respet to the quantization

level.

Remark 5 (Romberg extrapolation with respet to the quantization level). In Setion 3.2, we have seen that

under some assumptions on the eigenvalues of the onvergene operator, the rate of onvergene of optimal

quantizers and K-L optimal produt quantizers is (ln(N)−α) for some α ∈ (0, 1). Replaing the distortion

EN by its asymptotis

1
ln(N)α as N → ∞ in Equation (15) suggests to approximate E[F (X)] by the quantity

E[F (Yl)](ln l)
2α − E[F (Yk)](ln k)

2α

(ln l)2α − (ln k)2α
. (16)

Multidimensional Rihardson-Romberg extrapolation

Let X1
and X2

be two independent random variables. We wish to estimate the expetation E
[
F
(
X1, X2

)]

for some regular funtional F . In that view, one may use a ubature based on a produt quantizationÄ“X1, “X2
ä
of (X1, X2), and perform a multidimensional Rihardson-Romberg extrapolation. This amounts

to performing two Rihardson-Romberg extrapolations as desribed already, one related to the quantization

error of X1
between quantization levels N1 andM1, and one related to the quantization error of X2

between

quantization levels N2 and M2. This leads to approximating E[F (X1, X2)] by the quantity

E
2
M1

E
2
M2
FN1,N2 − E

2
N1

E
2
M2
FM1,N2 − E

2
M1

E
2
N2
FN1,M2 + E

2
N1

E
2
N2
FM1,M2

(
E2
M1

− E2
N1

) (
E2
M2

− E2
N2

) , (17)

where F p,q
denotes the estimated expetation obtained with the quantization-based ubature and quantiza-

tion levels of p and q for X1
and X2

respetively. In other words, F p,q
is de�ned by

F p,q := E

[
F
(”X1

p
,”X2

q)]

where

”X1
p
,

”X2
q
are quantizers of levels p and q for X1

and X2
respetively. In Equation (17), EMi and ENi

denote the quadrati quantization error of level Mi and Ni for Xi.

4 Stohasti alulus with respet to mBm

From now on and until the end of the work, we �x our mBm to be the well-balaned multifrational Brownian

motion de�ned in Setion 2. In addition, we will always assume that h is a C1
funtion with derivative

bounded on R.
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4.1 Some bakgrounds on white noise theory

This setion provides the neessary bakground on white noise theory to de�ne a stohasti integral and to

handle S.D.E.s driven by mBm.

De�ne the probability spae as Ω := S
′

(R) and let F := B(S
′

(R)) be the σ-algebra of Borel sets.
There exists a probability measure µ suh that, for every f in L2(R), the map 〈·, f〉 : Ω → R de�ned by

〈·, f〉 (ω) = 〈ω, f〉 (where 〈ω, f〉 is by de�nition ω(f), i.e the ation of the distribution ω on the funtion f)
is a entred Gaussian random variable with variane equal to ‖f‖2L2(R) under µ. For every n in N, denote

en(x) := (−1)n π−1/4(2nn!)−1/2ex
2/2 dn

dxn (e
−x2

) the nth Hermite funtion. Let (| · |p)p∈Z be the family of

norms de�ned by |f |2p :=
+∞∑
k=0

(2k + 2)2p 〈f, ek〉2L2(R), for all (p, f) in Z × L2(R). The operator A de�ned on

S (R) by A := − d2

dx2 + x2 + 1 admits the sequene (en)n∈N
as eigenfuntions and the sequene (2n+ 2)n∈N

as eigenvalues.

As is ustomary, we denote (L2) the spae L2(Ω,G, µ) where G is the σ-�eld generated by (〈·, f〉)f∈L2(R).

For every random variable Φ of (L2) there exists, aording to the Wiener-It� theorem, a unique sequene

(fn)n∈N
of funtions fn in L̂2(Rn) suh that Φ an be deomposed as Φ =

+∞∑
n=0

In(fn), where L̂
2(Rn) denotes

the set of all symmetri funtions f in L2(Rn) and In(f) denotes the nth multiple Wiener-It� integral of f with

the onvention that I0(f0) = f0 for onstants f0. Moreover we have the equality E[Φ2] =
+∞∑
n=0

n!‖fn‖2L2(Rn)

where E denotes the expetation with respet to µ. For any Φ :=
+∞∑
n=0

In(fn) satisfying the ondition

+∞∑
n=0

n! |A⊗nfn|20 < +∞, de�ne the element Γ(A)(Φ) of (L2) by Γ(A)(Φ) :=
+∞∑
n=0

In(A
⊗nfn), where A

⊗n

denotes the nth tensor power of the operator A (see [43, Appendix E℄ for more details about tensor produts

of operators). The operator Γ(A) is densely de�ned on (L2). It is invertible and its inverse Γ(A)
−1

is

bounded. Let us denote ‖ϕ‖20 := ‖ϕ‖2(L2) for ϕ in (L2) and let Dom(Γ(A)n) be the domain of the nth

iteration of Γ(A). De�ne the family of norms (‖ · ‖p)p∈Z
by:

‖Φ‖p := ‖Γ(A)pΦ‖0 = ‖Γ(A)pΦ‖(L2), ∀p ∈ Z, ∀Φ ∈ (L2) ∩Dom(Γ(A)p).

For any p in N, let (Sp) := {Φ ∈ (L2) : Γ(A)pΦ exists and belongs to (L2)} and de�ne (S−p) as the

ompletion of the spae (L2) with respet to the norm ‖ · ‖−p. As in [46℄, we let (S) denote the projetive
limit of the sequene ((Sp))p∈N and (S)∗ the indutive limit of the sequene ((S−p))p∈N. The spae (S) is
alled the spae of stohasti test funtions and (S)∗ the spae of Hida distributions. One an show that,

for any p in N, the dual spae (Sp)
∗
of Sp is (S−p). Thus we will write (S−p), in the sequel, to denote the

spae (Sp)
∗
. Note also that (S)∗ is the dual spae of (S). We will note 〈〈·, ·〉〉 the duality braket between

(S)∗ and (S). If Φ belongs to (L2) then we have the equality 〈〈Φ, ϕ〉〉 = 〈Φ, ϕ〉(L2) = E[Φ ϕ]. Sine we have
de�ned a topology given by a family of norms on the spae (S)∗ it is possible to de�ne a derivative and an

integral in (S)∗. A funtion Φ : R → (S)∗ is alled a stohasti distribution proess, or an (S)∗-proess, or
a Hida proess.

The Hida proess Φ is said to be di�erentiable at t0 if lim
r→0

r−1 (Φ(t0 + r) − Φ(t0)) exists in (S)∗.
Moreover we may also de�ne an integral of an Hida proess:

Theorem 4.1 (Integral in (S)∗). Assume that Φ : R → (S)∗ is weakly in L1(R, dt), i.e. assume that for all

ϕ in (S), the mapping u 7→ 〈〈Φ(u), ϕ〉〉 from R to R belongs to L1(R, dt). Then, there exists a unique element

in (S)∗, denoted by

∫
R
Φ(u)du, suh that

≠≠∫

R

Φ(u)du, ϕ

∑∑
=

∫

R

〈〈Φ(u), ϕ〉〉 du for all ϕ in (S). (18)

One says that Φ is (S)∗-integrable on R or integrable on R in the Pettis sense.
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For every f in L2(R), de�ne the Wik exponential of 〈·, f〉, noted : e〈·,f〉 :, as the (L2) random variable

equal to e〈·,f〉−
1
2 |f |

2
0
. The S-transform of an element Φ of (S∗), noted S(Φ), is de�ned to be the funtion from

S (R) to R given by S(Φ)(η) :=
〈〈
Φ, : e〈·,η〉

〉〉
for every η in S (R). Finally for every (Φ,Ψ) ∈ (S)∗ × (S)∗,

there exists a unique element of (S)∗, alled the Wik produt of Φ and Ψ and noted Φ ⋄ Ψ, suh that

S(Φ ⋄Ψ)(η) = S(Φ)(η) S(Ψ)(η); for every η in S (R).
The map S : Φ 7→ S(Φ), from (S)∗ to (S)∗, is injetive. Furthermore, let Φ : R → (S)∗ be a �xed (S)∗

proess. If Φ is (S)∗-integrable over R then for all η in S (R), S(
∫
R
Φ(u) du)(η) =

∫
R
S(Φ(u))(η) du. If Φ is

(S)∗-di�erentiable over R then for all η in S (R), S[dΦdt (t)](η) =
d
dt

[
[SΦ(t)](η)

]
.

For any Φ in (S)∗ and k in N
∗
, let Φ⋄k

denote the element

k times︷ ︸︸ ︷
Φ ⋄ · · · ⋄ Φ of (S)∗. One an generalize

the de�nition of exp⋄ to the ase where Φ belongs to (S)∗. Indeed, for any Φ in (S)∗ suh that the sum

+∞∑
k=0

Φ⋄k

k! onverges in (S)∗, de�ne the element exp⋄ Φ of (S)∗ by setting exp⋄ Φ :=
+∞∑
k=0

Φ⋄k

k! . It is alled Wik

exponential of Φ.
For f in L2(R) and Φ := 〈·, f〉, it is easy to verify that exp⋄ Φ exists and oinides with : e〈·,f〉 : de�ned

at the beginning of this setion.

4.1.1 Frational and multifrational white noise

Operators MH and

∂MH

∂H .

Let H belong to (0, 1). Following [31℄, the operator MH is de�ned in the Fourier domain by

◊�MH(u)(y) :=
√
2π

cH
|y|1/2−H û(y), ∀y ∈ R

∗.

This operator is well de�ned on the homogeneous Sobolev spae of order 1/2−H noted L2
H(R) and de�ned

by L2
H(R) := {u ∈ S ′(R) : û = Tf ; f ∈ L1

loc(R) and ‖u‖H < +∞}. The norm ‖ · ‖H derives from the inner

produt 〈·, ·〉H de�ned on L2
H(R) by: 〈u, v〉H := 1

c2
H

∫
R
|ξ|1−2H“u (ξ)“v (ξ)dξ where cH is de�ned right after

De�nition 2.1.

The de�nition of the operator

∂MH

∂H is quite similar [47℄. Preisely, de�ne, for H in (0, 1), the spae

ΓH(R) := {u ∈ S ′(R) : û = Tf ; f ∈ L1
loc(R) and ‖u‖δH(R) < +∞}, where the norm ‖ · ‖δH(R) derives from

the inner produt 〈·, ·〉δH de�ned on ΓH(R) by 〈u, v〉δH := 1
c2
H

∫
R
(βH + ln |ξ|)2 |ξ|1−2H “u (ξ) dξ.

The operator

∂MH

∂H , from

(
ΓH(R), 〈·, ·〉δH (R)

)
to

(
L2(R), 〈·, ·〉L2(R)

)
, is de�ned in the Fourier domain by:

ÿ�∂MH

∂H (u)(y) := −(βH + ln |y|)
√
2π

cH
|y|1/2−H û(y), ∀y ∈ R

∗.

Frational and multifrational white noise

For any measurable funtion h : R → (0, 1), it is easily seen that the proess Bh :=
(
Bh

t

)
t∈R

de�ned by

∀(ω, t) ∈ Ω× R, Bh
t :=

+∞∑

k=0

Ç∫ t

0

Mh(t)(ek)(s)ds

å
〈·, ek〉

is an mBm. Assuming that h is di�erentiable, we de�ne the (S)∗-valued funtion Wh := (Wh
t )t∈R

by

Wh
t :=

+∞∑

k=0

ï
d

dt

Å∫ t

0

Mh(t)(ek)(s) ds

ãò
〈·, ek〉. (19)

The following theorem states that, for all real t, the right-hand side of (19) does indeed belong to (S)∗ and

is exatly the (S)∗-derivative of Bh
at point t.
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Theorem-De�nition 4.1 ([47, Theorem-de�nition 5.1℄). Let h : R → (0, 1) be a C1
deterministi funtion

suh that its derivative funtion h′ is bounded. The proess Wh
de�ned by (19) is an (S)∗-proess whih

veri�es the following equality (in (S)∗):

Wh
t =

+∞∑

k=0

Mh(t)(ek)(t)〈·, ek〉+ h′(t)
+∞∑

k=0

Å∫ t

0

∂MH

∂H (ek)(s)
∣∣
H=h(t)

ds

ã
〈·, ek〉. (20)

Moreover the proess Bh
is (S)∗-di�erentiable on R and veri�es

dBh

dt (t) =Wh
t in (S)∗.

When the funtion h is onstant, identially equal to H , we will denoteWH :=
(
WH

t

)
t∈R

and all the proess

Wh
frational white noise. This proess was de�ned and studied in [31, 12℄.

4.2 Stohasti integral with respet to mBm

Using the tools presented above, we an now reall the de�nition of the Wik-It� integral with respet to

mBm from [47℄. Theorem 4.3 in this setion will be instrumental to solve the S.D.E. enountered later

De�nition 4 (Multifrational Wik-It� integral). Let Bh
be a normalized multifrational Brownian motion

and Y : R → (S)∗ be a proess suh that the proess t 7→ Yt ⋄Wh
t is (S)∗-integrable on R. The proess Y is

said to be d⋄Bh
-integrable on R or integrable on R with respet to mBm Bh

. Moreover, the integral on R of

Y with respet to Bh
is de�ned by

∫

R

Ys d
⋄Bh

s :=

∫

R

Ys ⋄Wh
s ds. (21)

For an interval I of R,
∫
I
Ys d

⋄Bh
s :=

∫
R
1I(s) Ys d

⋄Bh
s .

When the funtion h is onstant over R, equal to H , the multifrational Wik-It� integral oinides with

the frational Wik-It� integral de�ned in [31℄, [12℄, [9℄ and [10℄. In partiular, when Y is adapted and

when the funtion h is identially equal to 1/2, (21) is nothing but the lassial It� integral with respet to

Brownian motion.

The multifrational Wik-It� integral veri�es the following properties:

Proposition 4.2. Let Bh
be an mBm and I be an interval of R.

• For all (a, b) in R
2
suh that a < b,

∫ b

a
1 d⋄Bh

u = Bh
b −Bh

a almost surely.

• LetX : I → (S)∗ be a d⋄Bh
-integrable proess over I. If

∫
I
Xs d

⋄Bh
s belongs to (L2), then E[

∫
I
Xs d

⋄Bh
s ] =

0.

Multifrational Wik-It� integral of deterministi elements

In order to solve di�erential equations driven by an mBm that will be enountered below, it is neessary to

know the exat nature of multifrational Wik-It� integrals of deterministi elements.

For H in (0, 1) and f in S (R), de�ne the funtion gf : R × (0, 1) → R by gf(t,H) :=
∫ t

0
MH(f)(x)dx

where MH is the operator de�ned in at the beginning of Setion 4.1.1. It has been shown that gf belongs

to C∞(R × (0, 1),R) (f. [47, Lemma 5.5℄). The main result on the multifrational Wik-It� integral of

deterministi elements is the following:

Theorem 4.3. ([47, Theorem 5.25℄) Let h : R → (0, 1) be a C1
deterministi funtion and let f : R → R

be a measurable deterministi funtion whih belongs to L1
lo

(R). Let Z := (Zt)t∈R
be the proess de�ned by

Zt :=
∫ t

0
f(s) d⋄Bh

s . Then Z is an (S)∗-proess whih veri�es the following equality in (S)∗

∫ t

0

f(s) d⋄Bh
s =

+∞∑

k=0

Ç∫ t

0

f(s) d
ds [gek(s, h(s))] ds

å
〈·, ek〉. (22)
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Moreover Z is a (entred) Gaussian proess if and only if

+∞∑
k=0

Ä∫ t

0
f(s) d

ds [gek(s, h(s))] ds
ä2
< +∞, for all t

in R. In this ase we have, for every t in R,

Zt =

∫ t

0

f(s) d⋄Bh
s

L∼ N
(
0,

+∞∑

k=0

Ç∫ t

0

f(s) d
ds [gek(s, h(s))] ds

å2
)
. (23)

In partiular, Z is a Gaussian proess when f belongs to C1(R;R).

Deriving the quantity E
[
Z2
t

]
in the previous theoremmight be ompliated using Equation (23). However,

when f is a C1
funtion, thanks to the It� formula with respet to mBm [47, Theorem 6.9℄, we obtain the

following integration-by-parts formula

∫ t

0

f(s) d⋄Bh
s

(L2)
= f(t) Bh

t −
∫ t

0

f ′(s) Bh
s ds, (24)

whih leads to

E
[
Z2
t

]
= f(t)2 t2h(t) +

∫ t

0

∫ t

0

f ′(s) f ′(u) Rh(s, u) ds du− 2f(t)

∫ t

0

f ′(s) Rh(t, s) ds. (25)

Remark 6. The integration-by-parts formula (24) allows to identify almost surely

∫ t

0
f(s) d⋄Bh

s with the

quantity Ift (B
h) where the map Ift : C0([0, t];R) → R is de�ned by

Ift : g 7→
Ç
f(t)g(t)−

∫ t

0

f ′(s)g(s) ds

å
. (26)

4.3 Stohasti di�erential equations

We solve in this subsetion the two stohasti di�erential equations that de�ne the multifrational stohasti

volatility models presented in Setion 5.

4.3.1 Mixed multifrational Brownian S.D.E.

Let us onsider the following mixed multifrational stohasti di�erential equation, where γ1 and γ2 are

positive onstants and Bt is a Brownian motion:

®
dXt = Xt

(
γ1d

⋄Bt + γ2d
⋄Bh

t

)
,

X0 = x0 ∈ R.
(27)

Of ourse (27) is a shorthand notation for the equation

Xt = x0 + γ1

∫ t

0

Xsd
⋄Bs + γ1

∫ t

0

Xsd
⋄Bh

s , X0 = x0 ∈ R,

where the previous equality holds in (S)∗. A solution of this equation will be alled geometri mixed

multifrational Brownian motion. Rewriting the previous equation in terms of derivatives in (S)∗, we get:
dXt

dt
= Xt ⋄

Ä
γ1W

1/2
t + γ2W

h
t

ä
, x0 ∈ R. (28)

Theorem 4.4 (Geometri mixed multifrational Brownian motion). The (S)∗-proess (Xt)t∈[0,T ] de�ned by

Xt := x0 exp
⋄ (γ1Bt + γ2B

h
t

)
, (29)

is the unique solution of (28) in (S)∗.
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Proof: Applying the S-transform to both sides of Equation (28) and denoting by yη the map t 7→ S(Xt)(η),
for every η in S (R), we get:

y′η(t) = yη(t)

Å
γ1M1/2(η)(t) + γ2

d

dt
[gη(t, h(t))]

ã
, yη(0) = x0.

This equation admits a unique solution whih veri�es yη(t) = x0 exp {γ1
∫ t

0
M1/2(η)(u)du + γ2

∫ t

0
d
du [gη(u, h(u))]du}.

Using (i) and (ii) of [47, Theorem 5.12℄ we hene get, for every η in S (R),

yη(t) = x0 exp {γ1S(Bt)(η) + γ2S(B
h
t )(η)} = S

(
x0 exp

⋄ {γ1Bt + γ2B
h
t }
)
(η).

The injetivity of the S-transform allows us to onlude that Xt = x0 exp
⋄ {γ1Bt + γ2B

h
t

}
for every t in

[0, T ]. �

Remark 7. (i) Using [43, Equality (3.16)℄, one sees that X is an (L2)-valued proess that may be represented

as:

Xt = x0 exp
¶
γ1Bt + γ2B

h
t − 1

2

Ä
γ21t+ γ22t

2h(t)
ä©

.

(ii) The theorem is also a onsequene of [41, Theorem 3.1.2℄.

4.3.2 Mixed multifrational Ornstein-Uhlenbek S.D.E.

Let us now onsider the following mixed stohasti di�erential equation:

®
dUt = θ(µ− Ut)dt+ (α1 d

⋄Bt + α2 d
⋄Bh

t )

U0 = u0 ∈ R,
(30)

where (Bt)t∈R and

(
Bh

t

)
t∈R

are independent, θ ≥ 0 and µ, α1, α2 belong to R. A solution of this equation

will be alled a mixed multifrational Ornstein-Uhlenbek proess.

Theorem 4.5 (Mixed multifrational Ornstein-Uhlenbek proess). The L2(Ω)-valued proess (Ut)t∈R de-

�ned by

Ut := u0e
−θt + µ

(
1− e−θt

)
+ α1

∫ t

0

eθ(s−t)d⋄Bs + α2

∫ t

0

eθ(s−t)d⋄Bh
s , (31)

is the unique solution of the stohasti di�erential equation (30).

Proof: The proof that the proess U de�ned by (31) is the unique solution of (30) is very similar to the one

of Theorem 4.4. Indeed, setting yη(t) := S(Ut)(η) for every (t, η) in R×R and applying the S-transform to

both sides of (30) we get, for every η in S (R), the ordinary di�erential equation

y′η(t) = θ(µ− yη(t)) + α1M1/2(η)(t) + α2
d
dt [gη(t, h(t))], yη(0) = u0. (32)

Its unique solution is

yη(t) = u0e
−θt + e−θt

∫ t

0

eθs
(
θµ+ α1M1/2(η)(s) + α2

d
ds [gη(s, h(s))]

)
ds, yη(0) = u0.

Again, one onludes using the injetivity of the S-transform. �
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4.4 Quantization of solutions of S.D.E. driven by mBm

Quantizing a Gaussian proess X often yields as well a quantization of the solutions of stohasti di�erential

equations driven by X : indeed, in many ases, these solutions may be expressed as funtionals of X . A

quantizer of the solution an then be obtained by simply plugging the quantizer of X into the funtional.

In the one-dimensional setting, under rather general onditions on the di�usion oe�ients and if X is

a ontinuous semimartingale, this funtional is easily determined using the Lamperti transform (see [52℄).

In this ase, the orresponding quantizer of the stohasti di�erential equation is obtained by plugging the

Gaussian quantizer in the S.D.E. written in the Stratonovih sense, leading to a �nite set of ordinary di�er-

ential equations. This leads to a simple and general onstrutive method to build a funtional quantization

of the solution of an S.D.E.

Unfortunately, no suh result is available in the ase of an S.D.E. driven by multifrational Brownian

motion (or even by frational Brownian motion). However, in some situations, and in partiular when an

expliit solution is known, one may sometimes still use the proedure just desribed: if the funtional giving

the solution is regular enough, quantization-based ubatures an then be used. This is for instane the ase

of geometri mixed multifrational Brownian motion de�ned in Setion 4.3.1, whih is a simple funtional of

a Brownian motion and a multifrational Brownian motion (see Remark 7 and setion 3.3.2). We desribe

two other favourable situations in the next subsetions.

4.4.1 The ase of a Wiener integral

An easy ase is the one of a Wiener integral

∫ t

0
f(s)d⋄Bh

s where f is a C1
deterministi funtion. The

integration-by-parts formula for mBm (24) reads

∫ t

0
f(s)d⋄Bh

s
a.s.
= f(t)Bh

t −
∫ t

0
f ′(s)Bh

s ds. Thus, for p ≥ 1,

the stohasti proess t 7→
∫ t

0
f(s)d⋄Bh

s , seen as a random variable valued in Lp(0, T ), is the image of Bh
by

the map

Jf : Lp([0, T ]) → Lp([0, T ])

g 7→ f(·)g(·)−
∫ ·
0
f ′(s)g(s)ds.

In other words we have (dt-almost everywhere) Jf (g)(t) = Ift (g) where I
f
t was de�ned in Remark 6.

Proposition 4.6 (Lp
-regularity of the Wiener map). For every p ≥ 1, the map Jf

is Lipshitz ontinuous

on Lp([0, T ]).

Proof: It is straightforward that for (g1, g2) ∈ Lp([0, T ])2

∥∥∥Jf (g1)− Jf (g2)
∥∥∥
p
≤ ‖f(g1 − g2)‖p +

∥∥∥∥
∫ ·

0

f ′(s)(g1(s)− g2(s))ds

∥∥∥∥
p

≤ (‖f‖∞ + ‖f ′‖∞T ) ‖g1 − g2‖p .

�

In Appendix A, we prove that if h is C1
, the Karhunen-Loève eigenfuntions of a well-balaned mBm Bh

have bounded variations, and thus stationary quantizers of Bh
have bounded variations as well (beause

they lie on a subspae of L2([0, T ]) spanned by a �nite number of Karhunen-Loève eigenfuntions, as already

mentioned). In this setting, another integration by parts gives Ift
Ä“Bh
ä
=
∫ t

0
f(s)d“Bh

s where d“Bh
s (ω) stands

for the signed measure assoiated with the funtion of bounded variation s 7→ “Bh
s (ω).

4.4.2 The ase of ertain simple di�usions

Another easy ase is the one of an S.D.E. of the form

Yt = y0 +

∫ t

0

β(s, Ys)ds+Xt, (33)
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where β(s, y) is assumed to be Lipshitz ontinuous in y uniformly in s. This setting is addressed in [52, p.

20-21℄ (atually, in [52℄, the Lamperti transform is used to redue a general Brownian di�usion to this ase),

where the authors onsider the assoiated integral equation

y(t) = y0 +

∫ t

0

β(s, y(s))ds+ g(t), (34)

where g ∈ Lp([0, T ]) is �xed. The existene and uniqueness in Lp([0, T ]) of a solution for the integral

equation (34) follows from the same approah used for ordinary di�erential equations. Then the solution of

the assoiated S.D.E. (33) simply reads Ut = Ψβ
p (X)t, where Ψβ

p : Lp([0, T ]) → Lp([0, T ]) is the funtional

that maps g ∈ Lp([0, T ]) to the unique solution in Lp([0, T ]) of Equation (34). In [52℄, the map Ψβ
p is showed

to be Lipshitz ontinuous in Lp([0, T ]). More preisely, one has

c([β]
Lip

, T ) ‖g1 − g2‖pp ≤
∥∥∥Ψβ

p (g1)−Ψβ
p (g2)

∥∥∥
p

p
≤ C([β]

Lip

, T ) ‖g1 − g2‖pp ,

with c([β]
Lip

, T ) = 1

2p−1(1−[β]p
Lip

Tp)
and C([β]

Lip

, T ) = e2
p−1[β]

Lip

Tp−1

.

Mixed multifrational Ornstein-Uhlenbek proess, de�ned in Setion 4.3.2, is of the form (34), with

β(s, u) = θ(µ− u) and X = α1B + α2B
h
.

5 Multifrational stohasti volatility models

Subsetion 5.1 is devoted to a short reall on implied forward start volatility. In Subsetions 5.2 and 5.3

we propose two multifrational stohasti volatility models, the multifrational Hull & White and the mul-

tifrational SABR volatility models. The former generalizes the frational long-memory stohasti volatility

model presented in [20, Paragraph 2℄ and the latter is an extension of the elebrated SABR stohasti volatil-

ity model [37℄ in the ase where β is equal to 1. We propose a numerial sheme based on the funtional

quantization of mBm for the omputation of the prie of forward start options in the two ases. For any

ε > 0 we provide an upper bound for the L2−ε
quantization error of the instantaneous volatility proess σ

in the two models.

5.1 The implied forward start volatility

Vanilla option pries are typially onverted in terms of Blak Sholes implied volatility by pratitioners,

beause this quantity an be easily interpreted as the rude option prie. As we devised a numerial sheme

for forward start options, we give here the assoiated notion of �forward implied volatility�, with a speial

attention beause the term �forward volatility� is used for di�erent notions in the literature.

The forward start option prie.

LetW be a standard Brownian motion on [0, T ] and τ ∈ (0, T ). Let us onsider the stohasti di�erential
equation dSt = StσtdWt (with (σt)t∈[0,T ] a deterministi proess) whose solution is a geometri Brownian

motion St = S0 exp
Ä∫ t

0
σsdWs − 1

2

∫ t

0
σ2
s ds
ä
. The forward start Call option prie FSPrimeBS(σ, τ, T,K)

is given by

FSPrimeBS(σ, τ, T,K) = E

ñÅ
ST

Sτ
−K

ã

+

ô
= N (d1)−KN (d2),

where d1 := σ
√
T−τ
2 + ln(K)

σ
√
T−τ

, d2 := d1 − σ
√
T−τ
2 and σ2 := 1

T−τ

∫ T

τ
σ2
s ds. In other words, we have

FSPrimeBS(σ, τ, T,K) = PrimeBS(1, σ, T − τ,K), (35)

where (S0,Vol,Mat, Strike) 7→ PrimeBS(S0,Vol,Mat, Strike) is the losed-form expression for the vanilla

Call option prie in the Blak & Sholes model.
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The implied forward start volatility.

In the Blak & Sholes model, where the asset prie follows a geometri Brownian motion with a onstant

volatility, the forward start Call (or Put) option prie is an inreasing funtion of the volatility (if the strike

is not zero). Conversely, for a given forward start Call (or Put) option prie, the Blak & Sholes implied

volatility is the unique value of the volatility for whih the Blak & Sholes formula reovers the prie; in

other words, the implied forward start volatility assoiated with a given forward F0, a forward start date τ ,
a maturity T > τ , a strike K, and an option prie P is de�ned by

P = FSPrimeBS (ImpliedFSVolBS (τ, T,K, P ) , τ, T,K) . (36)

Using Equation (35), this yields

ImpliedFSVolBS (τ, T,K, P ) = ImpliedVolBS (1, T − τ,K, P ) , (37)

where ImpliedVolBS (Fwd,maturity, Strike,Prie) is the Blak & Sholes implied volatility a ertain for-

ward, maturity, strike and option prie.

5.2 Multifrational Hull & White stohasti volatility model

We assume that, under the risk-neutral measure, the forward prie of a risky asset is the solution of the

S.D.E. ß
dFt = FtσtdWt,
d ln(σt) = θ (µ− ln(σt)) dt+ γhd

⋄Bh
t + γσdW

σ
t , σ0 > 0,

(38)

where θ ≥ 0 and whereW and W σ
are two standard Brownian motions and Bh

is a well-balaned multifra-

tional Brownian motion independent of W and W σ
with funtional parameter h assumed to be ontinuously

di�erentiable. We assume that W is deomposed into ρdW σ
t +

√
1− ρ2dWF

t , where WF
is a Brownian

motion independent of W σ
. Hene, (38) writes

®
dFt = Ftσt

Ä
ρdW σ

t +
√
1− ρ2dWF

t

ä

d ln(σt) = θ (µ− ln(σt)) dt+ γhd
⋄Bh

t + γσdW
σ
t , σ0 > 0.

(39)

We denote respetively by Fσ
, FF

and Fh
the natural �ltrations of W σ

, WF
and Bh

. We de�ne the

�ltration Fσ,h
by Fσ,h

t = σ
(
Fσ

t ,Fh
t

)
and FF,σ,h

by FF,σ,h
t = σ

(
FF

t ,Fσ
t ,Fh

t

)
.

The unique solution of (38) reads

®
Ft = F0 exp

Ä∫ t

0
σsdWs − 1

2

∫ t

0
σ2
sds
ä

σs = exp
(
ln(σ0)e

−θs + µ
(
1− e−θs

)
+ γσ

∫ s

0
eθ(u−s)dW σ

u + γh
∫ s

0
eθ(u−s)d⋄Bh

u

)
.

(40)

In other words, ln(σt) is a mixed multifrational Ornstein-Uhlenbek proess. Note that, although the

volatility proess is not a semimartingale, the proess (Ft)t∈[0,T ] remains a (positive) FF,σ,h
-loal martingale,

and thus a super-martingale. The same proof as in [44℄ shows that, if ρ = 0, this loal martingale is indeed

a martingale. Numerial experiments seem to indiate that this property still holds for ρ < 0, a fat that

remains to be proved.

We now onsider the problem of priing a forward start all option (the put ase is handled similarly).

The payo� of this option writes

Ä
FT

Fτ
−K
ä
+
for some �xed maturity τ ∈ [0, T ]. We need to ompute the

risk-neutral expetation E

[Ä
FT

Fτ
−K
ä
+

]
.

The following deomposition holds:

Ft = F0 exp

Ç
ρ

∫ t

0

σsdW
σ
s − ρ2

2

∫ t

0

σ2
sds

å

︸ ︷︷ ︸
measurable with respet to Fσ,h

t

exp

Ç√
1− ρ2

∫ t

0

σsdW
F
s − 1− ρ2

2

∫ t

0

σ2
sds

å
.
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Conditioning by Fσ,h
T yields

E

[Ä
FT

Fτ
−K
ä
+

]
= E

[
E

[Ä
FT

Fτ
−K
ä
+

∣∣∣Fσ,h
T

]]

= E

[
E

[Ä
Fτ,T exp

Ä√
1− ρ2

∫ t

0
σtdW

F
t − 1−ρ2

2

∫ t

0
σ2
sds
ä
−K
ä
+

∣∣∣Fσ,h
T

]]

= E

[
PrimeBS

(
Fτ,T ,

(
(1− ρ2) 1

T−τ

∫ T

τ

σ2
sds

︸ ︷︷ ︸
=:Iσ

τ,T

) 1
2

, T − τ,K
)]
,

(41)

where Fτ,T := exp
Ä
ρ
∫ T

τ
σsdW

σ
s − ρ2

2

∫ T

τ
σ2
sds
ä
and PrimeBS is the losed-form expression for the prie of a

Call option in the Blak & Sholes model, detailed in Appendix 5.1. The aim is to estimate the expetation

(41) by a quantization-based ubature assoiated with the funtional quantization of Bh
and W σ

. We thus

need to write the terms Fτ,T and

∫ T

τ
σ2
sds as expliit funtionals of the paths of W

σ
and Bh

in L2([0, T ]).

Reall that σ is the exponential of a mixed multifrational Ornstein-Uhlenbek proess:

σt = exp
Ä
ln(σ0)e

−θt + µ
(
1− e−θt

)
+ γσe

−θtIe
θ·

t (W σ) + γhe
−θtIe

θ·

t (Bh)
ä
. (42)

This yields an expliit funtional form for

∫ T

τ
σ2
sds as a funtion of the paths of W σ

and Bh
. Denote

(phj )1≤j≤N1 and (χh
j )1≤j≤N1 the weights and the paths of the quantizer

“Bh
of Bh

, and (pσj )1≤j≤N2 and

(χσ
j )1≤j≤N2 the weights and the paths of the quantizer Ŵ σ

of W σ
. Conditionally on Bh = χh

i , one has

Iστ,T = Iσ
i

τ,T , where

Iσ
i

τ,T :=

∫ T

τ

σi
sdW

σ
s

and

σi
t = exp

(
ln(σ0)e

−θt + µ
(
1− e−θt

)
+ γσ

∫ t

0

eθ(s−t)dW σ
s + γhe

−θt Igt
(
χh
i

) )
.

Appendix B shows that χh
i has bounded variations. This entails that σi

is a semimartingale. De�ne

〈σi,W σ〉τ,T := 〈σi,W σ〉T − 〈σi,W σ〉τ , where 〈·, ·〉 denotes the semimartingale braket and let us denote

by

∫ T

τ
σi
s ◦ dW σ

s the Stratonovih integral of σi
. Then, Iσ

i

τ,T reads

Iσ
i

τ,T =

∫ T

τ

σi
s ◦ dW σ

s − 1

2
〈σi,W σ〉τ,T .

It�'s formula yields

∫ T

τ

σi
t dW

σ
t =

σi
T − στ
γσ

− 1

γσ

∫ T

τ

σi
tθ
(
µ− ln

(
σi
t

))
dt− γh

γσ

∫ T

τ

σi
tdχ

h
i (t)

︸ ︷︷ ︸
=
∫

T

τ
σi
t ◦ dWσ

t

− γσ
2

∫ T

τ

σi
tdt

︸ ︷︷ ︸
= 1

2 〈σi,Wσ〉τ,T

.

Moreover, ∫ T

τ

“σi
t dŴ

σ
t =

“σi
T − σ̂τ
γσ

− 1

γσ

∫ T

τ

“σi
tθ
Ä
µ− ln

Ä“σi
t

ää
dt− γh

γσ

∫ T

τ

“σi
tdχ

h
i (t).

This shows that

∫ T

τ
σi
t ◦ dW σ

t may be approximated by

∫ T

τ
“σi

t dŴ
σ
t and

∫ T

τ
σi
t dt by

∫ T

τ
“σi
t dt. Thus we

approximate Iσ
i

τ,T by Îσ
i

τ,T :=
∫ T

τ
“σi
sdŴ

σ
s − γσ

2

∫ T

τ
“σi
sds.

The ubature formula is then fully expliit and one �nally obtains the following approximation:
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E

ñÅ
FT

Fτ
−K

ã

+

ô
≈

N1∑

i=1

N2∑

j=1

phi p
σ
jPrimeBS

Ñ
F i,j
τ,T ,

Ç(
1− ρ2

) 1

T − τ

∫ T

τ

(
σi,j(s)

)2
ds

å 1
2

, T − τ,K

é
,

where

F i,j
τ,T = exp

Ç
ρ

∫ T

τ

σi,j(s)dχσ
j (s)− ργσ

1

2

∫ T

τ

σi,j(s)ds− ρ2

2

∫ T

τ

(
σi,j(s)

)2
ds

å
,

and

σi,j(t) := exp
Ä
ln(σ0)e

−θt + µ
(
1− e−θt

)
+ γσe

−θtIe
θ·

t (χσ
j ) + γhe

−θtIe
θ·

t (χh
j )
ä
.

(
ln(σi,j)

)
1≤i≤N1,1≤j≤N2

and (phi p
σ
j )1≤i≤N1,1≤j≤N2 are the paths and weights of a stationary quantizer of

the mixed multifrational Ornstein-Uhlenbek proess ln(σ). The results stated in Setion 4.4.2 allow us to

ontrol its quadrati quantization error with the quantization error of Ŵ σ
and

“Bh
. We then apply (13) to

get an upper bound for the L2−ǫ
quantization error of the proess σ on [0, T ], for any ǫ > 0 .

5.3 Multifrational SABR model

We onsider the ase where, under the risk-neutral measure, the forward prie of a risky asset is the solution

of the S.D.E. ß
dFt = FtσtdWt,
dσt = σt

(
γhd

⋄Bh
t + γσdW

σ
t

)
, σ0 > 0,

(43)

where W and W σ
are two standard Brownian motions and Bh

is a well-balaned multifrational Brownian

motion independent of W and W σ
with funtional C1

parameter h. We assume that W is deomposed into

ρdW σ
t +

√
1− ρ2dWF

t , where WF
is a Brownian motion independent of W σ

. We use the same notations as

in the previous setion for Fσ
, FF

, Fh
, Fσ,h

and FF,σ,h
. Hene, (43) writes

®
dFt = Ftσt

Ä
ρdW σ

t +
√
1− ρ2dWF

t

ä

dσt = σt
(
γhd

⋄Bh
t + γσdW

σ
t

)
, σ0 > 0.

(44)

This is an extension of the SABR model, in when the β parameter is equal to 1. This model an be

handled in the same way as the multifrational Hull & White model.

The solution of the stohasti di�erential equation veri�ed by σ, established in Theorem 4.4, is

σt = σ0 exp
⋄ (γσW σ

t + γhB
h
t

)
= σ0 exp

Å
γσW

σ
t + γhB

h
t − 1

2

Ä
γ2σt+ γ2ht

2h(t)
äã

. (45)

Reasoning as in the ase of the Hull & White model presented in Setion 5.2, it an be shown that F is an

FF,σ,h
-martingale for ρ = 0. In addition, the same numerial proedures as above may be used.

6 Numerial experiments

6.1 Variane redution method for the quantization-based ubature

Here, we present a simple kind of ontrol variate method for the quantization-based ubature method that

we use, whih slightly improves the numerial auray of the method.

Numerial experiments arried out in [22℄ showed that, in the ase of vanilla options, omputing the

implied volatility using the estimated forward instead of the theoretial forward in the Blak & Sholes

formula improves the auray. The ounterpart of this method in the frame of forward start options is to

replae the �1� appearing in Formula (37) by the quantity

IN1,N2 :=
∑

1≤i≤N1, 1≤j≤N2

phi p
σ
j F

i,j
τ,T (46)
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This also holds when using Rihardson-Romberg extrapolation: in this ase, one uses the extrapolated value

of IN1,N2 instead of 1 in Formula (37).

These methods were used to generate the numerial results presented below.

6.2 Numerial results

We present results on the multifrational Hull & White model. We have omputed the prie as a funtion

of strike for di�erent maturities: 1, 2.5, 5 and 10 years. Driving noises were hosen in the lass of fBms and

mBms. More preisely, we display results of our experiments with:

1. An fBm with H = 0.2.

2. An fBm with H = 0.5.

3. An fBm with H = 0.75.

4. An fBm with H = 0.9.

5. An mBm with h = h1 = 0.35 sin
(
2π
10

(
t+ 15

2

))
+ 0.55.

6. An mBm with h = h2 = 0.35 sin
(
2π
5

(
t+ 15

4

))
+ 0.55.

7. An mBm with h = h3 = 0.35 sin
(
6π
5

(
t+ 5

4

))
+ 0.55.

8. An mBm with h = h4 = −0.2 sin
(
6π
5

(
t+ 5

4

))
+ 0.7.

9. And, �nally, an mBm with h =◊�hV olSP , whih orresponds to the regularity estimated on the S&P 500

trae that was analysed in Setion 1.

The four funtions h1 to h4 are plotted on Figure 6. The values of the other parameters are γh = 0.3,
γσ = ρ = 0 (exept for the experiments displayed on Figure 9), θ = 0.3, µ = ln(0.2), σ0 = 0.2 and F0 = 100.
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Figure 6: left: funtions h1 and h4; middle: funtion h2; right: funtion h3.

The results displayed on Figures 7 and 8 provide an experimental justi�ation to the laims made in the

introdution. Indeed, one sees that, for the short maturity T = 1 year, in the frational Hull & White model

(i.e. with h onstant), the smiles are more pronouned for small H and derease as H inrease, while the

reverse is true for all maturities larger than one year (Figure 7). Thus, stronger orrelations in the driving

noise do translate in this model into a slower derease of the smile as maturities inrease, as noted in [19℄.

However, with suh an fBm-based model, an H larger than 1/2 is needed to ensure long-range dependene

and thus a more realisti evolution of the smile as ompared to the Brownian ase. As mentioned above, this

is not ompatible with empirial graphs of the volatility whih show a very irregular behaviour, and would

require a small H , a fat whih was on�rmed in Setion 1 through an estimation of the loal regularity. In

addition, the loal regularity of the volatility evolves in time, alling for a varying H , i.e. an mBm.
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Another aspet is that a �xed H , as in a modeling with fBm, does not allow to ontrol independently

the shape of the smiles at di�erent maturities. This is possible with mBm, where the smile at maturity T
depends on a weighted average of the values of h up to time T , as an be inferred from equalities (24) and

(40). This is apparent on Figure 8. We have ompared fBms and mBms at various maturities T , where H
and h are hosen suh that h(t) = H , or, for the bottom right plot, h1(t) = h4(t). One sees that the shape of
the smile depends on a weighted average of past values of h. For instane, in the bottom left plot, the values

of h before T = 2.5 are in average smaller than 0.9, resulting in a �atter smile. The fat that a weighted

average must be onsidered is apparent on the bottom right plot: indeed, the smile is more pronouned for

h1, although the average from 0 to 5 of this funtion is smaller than the one of h4. In ontrast, the values

in the immediate past of t = 5 are larger for h1 than for h4, as may be heked on Figure 6. An adequate

hoie of h may thus allow one to better approximate a whole implied volatility surfae. This topi will be

addressed in a future work.

Figure 9 displays:

• an example with

◊�hV olSP , that regresses the regularity funtion of the volatility of S&P 500 estimated

in Setion 1,

• an example with ρ 6= 0 and h = h2.

As one an see, smiles omputed with a regularity funtion obtained from market data indeed display all

the features observed empirially as detailed above. We believe this provides a further justi�ation to the

relevane of our model.
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Figure 7: Comparisons of vanilla option volatility smiles for fBm with H = 0.2, H = 0.5, H = 0.7 and

H = 0.9 at di�erent maturities. Top left: T = 1. Top right: T = 2.5. Bottom left: T = 5. Bottom right:

T = 10.
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Figure 8: Comparisons of vanilla option volatility smiles for various fBm and mBm at several maturities.

Top left: fBm with H = 0.9 and mBm with funtion h1 at T = 5 (h1(5) = 0.9). Top right: fBm with

H = 0.2 and mBm with funtion h2 at T = 5 (h2(5) = 0.2). Bottom left: fBm with H = 0.9 and mBm with

funtion h3 at T = 2.5 (h3(2.5) = 0.9). Bottom right: mBm with funtion h1 and mBm with funtion h4 at
T = 5 (h1(5) = h4(5) = 0.9).
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Figure 9: Vanilla option volatility smiles in the multifrational Hull & White model, with γh = 0, γσ = 0.3,

θ = 0.3, µ = ln(0.2), σ0 = 0.2 and F0 = 100, and h = ◊�hV olSP for maturities T = 1, T = 2.5 and T = 5
(left), and with γh = 0.3, γσ = 0.3 ρ = −0.5, θ = 0.3, µ = ln(0.2), σ0 = 0.2 and F0 = 100, and h = h2 for

maturities T = 1, T = 2.5 and T = 5 (right).
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A Variations of the Karhunen-Loève eigenfuntions of mBm

Let Rh denote the ovariane funtion of a normalized mBm Bh
with funtional C1

parameter h and ehk be

the kth Karhunen-Loève eigenfuntion of Bh
. For k in N, de�ne the map Ik : [0, T ] → R by

Ik(t) :=
∫ T

0
Rh(t, s) e

h
k(s) ds = λhke

h
k, where λ

h
k is the eigenvalue assoiated with ehk .

Theorem A.1. For every integer k, the map ehk has bounded variations on [0, T ].

Proof: For every �xed (k, t) in N× [0, T ],

Ik(t) =

∫ T

0

c2ht,s

ch(t)ch(s)
t2ht,s ehk(s) ds+

∫ T

0

c2ht,s

ch(t)ch(s)
s2ht,s ehk(s) ds−

∫ T

0

c2ht,s

ch(t)ch(s)
|t− s|2ht,s ehk(s) ds

=: F1(t) + F2(t)− F3(t). (47)

We show that Fi has bounded variations for every i in {1, 2, 3}. The ases of F1, F2 and F3 are similar, and

we only treat here F1. Let (ti)0≤i≤N be a sequene of elements of [0, T ] suh that 0 = t0 < t1 < · · · < tN = T .
For any i in {1, · · · , N} we get,

|F1(ti)− F1(ti−1)| ≤

=:K1︷ ︸︸ ︷

sup
s∈[0,T ]

∣∣∣∣∣
ek(s)

ch(s)

∣∣∣∣∣

∫ T

0

∣∣∣∣∣
c2hti,s

ch(ti)
t
2hti,s

i −
c2hti−1,s

ch(ti−1)
t
2hti−1,s

i−1

∣∣∣∣∣ ds

≤ K1

Å ∫ T

0

c2hti,s

ch(ti)

∣∣∣t2hti,s

i − t
2hti−1,s

i−1

∣∣∣ ds
︸ ︷︷ ︸

=:Gi

+

∫ T

0

∣∣∣∣∣
c2hti,s

ch(ti)
−
c2hti−1,s

ch(ti−1)

∣∣∣∣∣ t
2hti−1,s

i−1 ds

︸ ︷︷ ︸
=:Li

ã
. (48)

Sine the map (s, t) 7→ c2ht,s

ch(t)
is C1

as soon as h is C1
, the mean-value theorem yields

∣∣∣∣∣
c2hti,s

ch(ti)
−
c2hti−1,s

ch(ti−1)

∣∣∣∣∣ ≤ sup
s∈[0,T ]

|f ′
s(t)| |ti − ti−1| =: K2 |ti − ti−1|,

where f ′
s(t) denotes, for every s in [0, T ], the derivative, at point t, of the map t 7→ c2ht,s

ch(t)
. Setting [H1, H2] :=ï

inf
u∈[0,T ]

h(u), sup
u∈[0,T ]

h(u)

ò
, one gets:

Li ≤ K2 |ti − ti−1|
∫ T

0

t
2hti−1,s

i−1 ds ≤ T (1 +K2) |ti − ti−1|
(
e2H1T + e2H2T

)
=: K3 |ti − ti−1|. (49)

Besides, Gi ≤ sup
(t,s)∈[0,T ]2

∣∣∣∣
c2ht,s

ch(t)

∣∣∣∣
∫ T

0

∣∣∣ti2hti,s − t
2hti−1,s

i−1

∣∣∣ ds =: K4

∫ T

0

∣∣∣t2hti,s

i − t
2hti−1,s

i−1

∣∣∣ ds.

Now, writing

ti
2hti,s − t

2hti−1,s

i−1 = ti
2hti,s − t

2hti,s

i−1︸ ︷︷ ︸
:=Ci(s)

− t
2hti,s

i−1 − t
2hti−1,s

i−1︸ ︷︷ ︸
:=Di(s)

,

we easily get that

∀s ∈ [0, T ], |Ci(s)| ≤ 2H2

∫ ti

ti−1

(
x2H2−1 − x2H1−1

)
dx.
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De�ne the family of maps (gα)α∈R∗

+
from R+ to R+, by gα(x) := αx

if x > 0 and gα(x) := 1 if x = 0. Let

K5 := sup
α∈[0,T ]

| ln(α)| (e2H1 ln(α) + e2H2 ln(α)). The mean-value theorem applied to gα yields

∀s ∈ [0, T ], |Di(s)| ≤ 2−1 K5 |2hti,s − 2hti−1,s | ≤ K5 sup
u∈[0,T ]

|h′(u)| |ti − ti−1| =: K6 |ti − ti−1|.

We hene have shown that

∀i ∈ {1; · · · ;N}, Gi ≤
=:K7︷ ︸︸ ︷

(1 + T ) (1 + 2H2) (1 +K4) (1 +K6)

Ç
|ti − ti−1|+

∫ ti

ti−1

(
x2H2−1 − x2H1−1

)
dx

å
.

(50)

Using (49) and (50) we �nally obtain

N∑

i=1

|F1(ti)− F1(ti−1)| ≤ 2K7

Å
1 +

1

2H1

ã (
T + T 2H1 + T 2H2

)
< +∞,

whih ends the proof. �
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