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Abstra
t

The aim of this work is to advo
ate the use of multifra
tional Brownian motion (mBm) as a relevant

model in �nan
ial mathemati
s. Multifra
tional Brownian motion is an extension of fra
tional Brownian

motion where the Hurst parameter is allowed to vary in time. This enables the possibility to a

ommodate

for varying lo
al regularity, and to de
ouple it from long-range dependen
e properties. While we believe

that mBm is potentially useful in a variety of appli
ations in �nan
e, we fo
us here on a multifra
tional

sto
hasti
 volatility Hull & White model that is an extension of the model studied in [20℄. Using

the sto
hasti
 
al
ulus with respe
t to mBm developed in [47℄, we solve the 
orresponding sto
hasti


di�erential equations. Sin
e the solutions are of 
ourse not expli
it, we take advantage of re
ently

developed numeri
al te
hniques, namely fun
tional quantization-based 
ubature methods, to get a

urate

approximations. This allows us to test the behaviour of our model (as well as the one in [20℄) with respe
t

to its parameters, and in parti
ular its ability to explain some features of the implied volatility surfa
e.

An advantage of our model is that it is able both to �t smiles at di�erent maturities, and to take into

a

ount volatility persisten
e in a more pre
ise way than in [20℄.

Keywords: Hull & White model, fun
tional quantization, ve
tor quantization, Karhunen-Loève, Gaussian

pro
ess, fra
tional Brownian motion, multifra
tional Brownian motion, white noise theory, S-transform,

Wi
k-It� integral, sto
hasti
 di�erential equations.

Introdu
tion

Volatility in �nan
ial markets is both of 
ru
ial importan
e and hard to model in an a

urate way. It has

been long known that a 
onstant volatility as in the Bla
k & S
holes model (see [15, 55℄) is not 
onsistent

with empiri
al �ndings, su
h as the smile e�e
t (i.e. the fa
t that volatility depends on both strike and

maturity of an option). More basi
ally, there is no reason to expe
t that instantaneous volatility should

be 
onstant. Sin
e the late 80's, several models allowing for a varying volatility have appeared. The most

popular ones in
lude ARCH models and their generalizations (see [32℄ as well as [36, 
hap. 20 & 21℄ and

referen
es therein) in dis
rete time, and sto
hasti
 volatility models [42, 40℄ and the lo
al volatility model [29℄

in 
ontinuous time. The lo
al volatility model, in parti
ular, is the only Markov di�usion pro
ess allowing

one to exa
tly 
alibrate the marginals of the risk-neutral probability and thus to to reprodu
e observed

implied volatility smiles. However, this model does not take into a

ount another well do
umented fa
t:

while sto
ks do not typi
ally exhibit 
orrelations, volatility does display long-range 
orrelations (see, e.g.

[3℄). Sto
hasti
 volatility models, in 
ontrast, are able to in
orporate this feature, provided an adequate

driving noise is used. In [20, 19℄, this is performed by using fra
tional integration. More pre
isely, the model
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onsidered in [20℄ for the dynami
 of the pri
e of a risky asset reads as follows:

ß
dSt = µ(t, St)dt+ StσtdWt,
d ln(σt) = θ (µ− ln(σt)) dt+ γdBH

t , σ0 > 0,
(1)

whereW is a Brownian motion and BH
t is an independent fra
tional Brownian motion (fBm) with parameter

H under the histori
al probability. Se
tion 2 re
alls some basi
 fa
ts about fBm. For now, it su�
es to

remind that its in
rements display long range dependen
e when H > 1/2, and that its pointwise Hölder

regularity is almost surely equal to H at all times. Ex
ept when H = 1/2, fBm is not a semi-martingale, and

thus neither will be ln(σt). However, this does not raise any problem: while pri
e pro
esses must be semi-

martingales due to absen
e of arbitrage 
onstraints (see, e.g. [27℄), su
h a requirement need not be imposed

on instantaneous volatility. As explained in [20℄, pri
es arising from Model (1) are indeed semi-martingales.

A prominent feature of this model is that it is 
onsistent with the slow de
ay in the 
orrelations of

volatility observed in pra
ti
e. It also a

ounts for two features related to the measured smile e�e
t: the

volatility pro
ess is less persistent in the short term than a standard di�usion, while it is more persistent in

the long run ([19, p. 3℄). We verify this fa
t in Se
tion 6 by solving (1) numeri
ally using re
ently developed

fun
tional quantization-based 
ubature methods.

By the very nature of this model, the evolution in time of the smile is governed by the single parameterH .

This does not permit enough �exibility to �t volatility surfa
es. In addition, (1) implies that the volatility

has 
onstant regularity equal to H . We provide in Se
tion 1 empiri
al eviden
e that this is typi
ally not the


ase by analysing re
ords of S&P 500 and VIX volatility index. In addition, lo
al regularity estimated on

these data are often smaller than 1/2, thus ruling out the desirable feature of long range dependen
e if one

insists on using fBm as a model. Although rather su

in
t, the numeri
al experiments of Se
tion 1 indi
ate

that a sto
hasti
 pro
ess with varying lo
al regularity would provide a better �t to volatility.

The main idea of this work is to repla
e the fBm appearing in (1) with a more general pro
ess 
alled

multifra
tional Brownian motion (mBm). This is an extension of fBm where the parameter H is repla
ed by

a smooth fun
tion h. By doing so, one obtains a pro
ess that has, at ea
h time t, pointwise Hölder regularity
equal to h(t), and, no matter the value of h in (0, 1), always display in
rements long-range dependen
e as long

h is not 
onstant. Thus, repla
ing fBm by mBm in (1) enables the possibility of �tting the non-stationary

lo
al regularity of volatility as measured on data, as well as of maintaining long-range dependen
e properties.

In addition, as we will show from numeri
al experiments in Se
tion 6, the model (written in a risk-neutral

setting): 



dFt = FtσtdWt,
d ln(σt) = θ (µ− ln(σt)) dt+ γhd

⋄Bh
t + γσdW

σ
t , σ0 > 0,

d〈W,W σ〉t = ρdt,
(2)

where Bh
t is an mBm, yields shapes of the smile at maturity T that are governed by a weighted average

of the values of the fun
tion h up to time T : thus, by adequately 
hoosing h, one may mimi
 a given implied

volatility surfa
e more faithfully than with the Hull & White model driven by fBm (1).

In order to give a rigorous meaning to the model above, a sto
hasti
 integral with respe
t to mBm must

be de�ned. Multifra
tional and fra
tional Brownian motion are not semimartingales, thus 
lassi
al It� theory

does not apply to them. At the time [20℄ was written, no theory for integration with respe
t to fBm was

available yet. Various approa
hes have been developed sin
e, based mainly on Malliavin 
al
ulus [25, 2℄,

pathwise integrals [65℄, rough paths [24℄, and white noise theory [31, 12, 10℄. As far as mBm is 
on
erned,

we note �rst that the Skohorod integral developed for instan
e in [2℄ does not seem to be easily adaptable

to mBm, as it would require writing Bh
as a Wiener integral over a �nite interval. This appears to be an

elusive task (see [38, se
tion 5℄ for details and [16℄ for a related approa
h). As for the pathwise approa
h

of [65℄, it extends immediately to the 
ase of mBm, as it is only relies on the regularity properties of the


ouple integrator - integrand (see [65℄ and [38℄ for more details). However, solving sto
hasti
 di�erential

equations (S.D.E.) typi
ally requires H > 1/2 or h(t) > 1/2, whi
h pre
ludes its use in our 
ontext. The last

approa
h, namely the white noise, lends itself naturally to an extension to mBm. In addition, this integral

o�ers several advantages over both the pathwise and Skohorod ones already in the 
ase of fBm: it allows to

deal with any H ∈ (0, 1); 
ontrarily to the pathwise integral, it is 
entred, and probabilisti
 quantities su
h
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as varian
es and expe
tations are easily 
omputed; furthermore, the white noise integral is a generalization

of the Skohorod one in the 
ase of fBm, in the sense that if the latter one exists, then so does the former

one, and both 
oin
ide [10℄. The white noise-based, or Wi
k-It�, integral with respe
t to fBm was developed

in [31, 9, 12℄, and applied to option pri
ing in a fra
tional Bla
k and S
holes model in [31℄ (su
h a fra
tional

Bla
k and S
holes model raises both �nan
ial and e
onomi
al issues, see [11, 14℄). It was extended to mBm

in [47℄. This is the theory we will use in order to study pre
isely our sto
hasti
 volatility models.

The reader interested in the links between the Wi
k-It� and various others integrals with respe
t to

fBm may 
onsult [10, Theorem 6.2℄, [56, Proposition 8℄ or [24, Corollary 8℄. About sto
hasti
 di�erential

equations driven by fBm in the Wi
k-It� sense, see [41, 46℄.

While we fo
us here on the multifra
tional sto
hasti
 volatility model (2) (we also brie�y 
onsider a

multifra
tional SABR model with β = 1 in Se
tion 5.3), we would like to mention that mBm is useful in a

variety of appli
ations in �nan
e (see [1℄ for a partial list of arti
les dealing with mBm in this �eld).

In order to assess the relevan
e of our model, we 
ompute numeri
ally in Se
tion 6 the smiles at di�erent

maturities. Sin
e the solution 
annot be written in an expli
it form, we need to resort to approximations.

In our 
ase, this is made possible by re
ent advan
es in the theory of fun
tional quantization of Gaussian

pro
esses.

Fun
tional quantization of Gaussian pro
esses has be
ome an a
tive �eld of resear
h in re
ent years

sin
e the seminal arti
le [50℄. As far as appli
ations are 
on
erned, 
ubature methods [58, 22℄ and varian
e

redu
tion methods [23, 48℄ based on fun
tional quantization have been proposed. However, as the numeri
al

use of fun
tional quantizers requires the evaluation of the Karhunen-Loève eigenfun
tions, this method was

restri
ted to pro
esses for whi
h a 
losed-form expression for this expansion is known, su
h as Brownian

motion. In [21℄, a numeri
al method was proposed to perform numeri
al quadrati
 fun
tional quantization

of more general Gaussian pro
esses, whi
h will be applied here to multifra
tional Brownian motion.

We show that we 
an handle a fast and a

urate forward start option pri
ing in this model thanks to a

fun
tional quantization-based 
ubature method similar to the one proposed in [58℄ and in [22℄. This allows

us to study the dependen
y of the smile dynami
s on the fun
tional parameter of the 
onsidered mBm.

The remaining of this paper is organized as follows. Se
tion 1 proposes a short empiri
al study of the

volatility of the S&P 500, whi
h shows that its regularity evolves in time. We re
all in Se
tion 2 basi


fa
ts about fBm and mBm. In Se
tion 3, we explain how to perform fun
tional quantization of mBm and

investigate the rate of de
ay of the 
orresponding quantization error. Quantization-based 
ubature is also

addressed in this se
tion. In Se
tion 4, we provide some ba
kground on the white noise-based sto
hasti


integral with respe
t to mBm. It also shows how to solve simple S.D.E. in this frame and presents general

remarks on the quantization of solutions of S.D.E. A detailed treatment of the multifra
tional Hull & White

and SABR models is proposed in Se
tion 5. Numeri
al experiments, displaying the evolution of pri
es as a

fun
tion of strike, as well as 
on
lusions are gathered in Se
tion 6.

1 A short empiri
al study of volatility

The aim of this se
tion is to provide empiri
al eviden
e that volatility in �nan
ial markets is irregular, and

that its lo
al regularity, as measured by the pointwise Hölder exponent, evolves in time. It is by no means

intended to present a 
omplete statisti
al study of volatility, whi
h is outside the s
ope of this work.

1.1 Lo
al regularity and its estimation

Let us �rst re
all the de�nition of the pointwise Hölder exponent of a real sto
hasti
 pro
ess X whose

traje
tories are 
ontinuous and nowhere di�erentiable. This is the sto
hasti
 pro
ess αX de�ned for every t
as

αX(t) = sup

ß
β, lim sup

h→0

|X(t+ h)−X(t)|
|h|β = 0

™
.

When there is no risk of 
onfusion, we shall write α in pla
e of αX . If one wants to put this notion to use

in pra
ti
e, the �rst problem is of that of estimating α from dis
rete data. There is a wealth of works dealing
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with this issue. In this study, we shall use the so-
alled in
rement ratio statisti
 developed in [7℄. The reader

interested in other estimation methods in this area may 
onsult the very 
omplete list of referen
e in this

arti
le. Let us just mention here [61℄, whi
h deals with statisti
al issues in the frame of a multifra
tional

sto
hasti
 volatility model.

1.2 Experiments with S&P 500 data

The �rst problem we fa
e is that we wish to estimate the lo
al regularity of the volatility of sto
k pri
es. Su
h

a quantity is not dire
tly observed on the market. We have tested two 
lassi
al strategies to obtain volatility

signals. In the �rst one, studied in this subse
tion, histori
al volatility is estimated dire
tly from high

frequen
y re
ords of pri
es. The se
ond approa
h uses quoted vanilla option pri
es to obtain an estimation

of the integrated lo
al volatility, and is dealt with in the next subse
tion.

Our raw data in this se
tion are minute quotes of the S&P 500, re
orded from February 2, 2012 to July 23,

2012, whi
h amounts to a total of 47748 samples. To estimate the histori
al volatility, we use essentially the

same pro
edure as in [3℄ (see also referen
es therein). More pre
isely, we �rst 
ompute the returns by taking

logarithms of di�eren
es. We then pro
ess the data to remove the high frequen
y market mi
rostru
ture

noise using a low-pass �lter. Samples are then grouped into blo
ks 
orresponding to a time period of four

hours. The volatility atta
hed to a blo
k is then the standard deviation of the �ltered samples 
ontained in

this blo
k. See Figure 1 for a graph of the original S&P 500 series along with the estimated volatility. Note

that our estimated histori
al volatility bears some resemblan
e with the ones displayed e.g. in [3℄. In both


ases, the volatility appears to be highly irregular.
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Figure 1: S&P 500 minute data (left) and estimated volatility for time periods of four hours (right).

We then estimate the lo
al regularity of the volatility using the in
rement ratio statisti
 of [7℄, to obtain

the results displayed on Figure 2. As we shall use this regularity as an input for our model below in Se
tion

6, we need an analyti
al expression for it. We have thus regressed the raw regularity using a simple sine

fun
tion, also shown on Figure 2. We denote this regressed fun
tion

◊�hV olSP , and will use it in our numeri
al

experiments in Se
tion 6.

Lo
al regularity estimated in this way on the volatility of the S&P 500 is 
learly not 
onstant in time. It

seems to os
illate with a period of roughly six weeks, and ranges approximately between 0.2 and 0.8.

1.3 Experiments with VIX data

Instead of estimating the volatility from raw data as above, another possibility is to use the VIX index,

whi
h is a popular measure of the implied volatility of the S&P 500 index options. Let us re
all some basi


fa
ts about this index.
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Figure 2: Estimated regularity of the volatility of the S&P 500 minute data (blue) and its regression (green).

Consider a �ltration F = (Ft)t∈[0,T ]. We assume that the forward pri
e of maturity T follows the

dynami
s dFt = σtdWt on [0, T ], where W is a standard Brownian motion adapted to F under the risk-

neutral measure and where (σt)t∈[0,T ] is a sto
hasti
 pro
ess adapted to F . Applying It�'s lemma, one

gets

E [ln(FT /F0)] = −1

2

∫ T

0

E[σ2
s ]ds.

More generally, at any time t, the 
onditional expe
tation E

î∫ t+T

t
σ2
sds
∣∣∣Ft

ó

an be dedu
ed from the loga-

rithmi
 pro�le, whi
h 
an be represented as a 
ombination of Call and Put payo�s of the same maturity

ln(F/F0) =
F − F0

F0
+

∫ F0

0

(K − F )+
K2

dK −
∫ ∞

F0

(F −K)+
K2

dK.

In pra
ti
e, one 
an approximate this logarithm pro�le by a dis
rete 
ombination of available Call and Put

payo�. This is what was done by the Chi
ago Board Options Ex
hange to design the VIX volatility index,

whi
h is an approximation of the one-month varian
e swap rate of the S&P 500 index

∫ t+τ

t
E[σ2

s |Ft] ds,
where τ is equal to one month (see [18℄ for the pre
ise de�nition of the VIX index). A 
onvex 
ombination of

option pri
es of the pre
eding and following listed maturities are used to approximate the desired one-month

maturity option pri
es.

If one assumes that the VIX index is a
tually equal to the quantity

∫ t+τ

t
E[σ2

s |Ft] ds where σ2
s is the

instantaneous varian
e of the S&P 500, then it seems intuitively plausible that its pointwise regularity at

time t is 1+min(αvol(t), αvol(t+τ)), sin
e integration typi
ally amounts to adding one to the lo
al regularity

(a theoreti
al justi�
ation of this fa
t is still an open problem). Thus, if estimating αV IX(t) on VIX data

yields a 
urve ranging in (1, 2) and varying in time, then su
h an empiri
al result would again support the

use of mBm rather than fBm to model volatility.

Figure 3 displays our data, the VIX minute quotes from February 2, 2012 to June 20, 2012 (392865 data

points). As above, we remove the market mi
rostru
ture noise by low-pass �ltering these data. In order to

allow for a fair 
omparison with the previous experiment, we then subsample the series in order to obtain a

four hours time period re
ord. Finally, we estimate the pointwise regularity using again the in
rement ratio

statisti
, also shown on Figure 3.

As in the previous subse
tion, the estimated pointwise regularity for the volatility seem to 
learly vary

in time. It ranges between 0.2 and 0.55. Although an os
illatory behaviour is less pronoun
ed than in the

previous experiment, it is still apparent.

The graphs above indi
ate that volatility is indeed irregular, with varying pointwise Hölder exponent. As

a 
onsequen
e, it 
annot be adequately modelled by fBm, sin
e this pro
ess has 
onstant regularity, as we
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Figure 3: VIX minute data (left) and estimated regularity for time periods of four hours (right).

re
all in the next se
tion. In 
ontrast, mBm is able to 
apture this and other properties of volatility, su
h

as long range dependen
e, as we explain below.

2 Ba
kground on multifra
tional Brownian motion

Fra
tional Brownian motion (fBm) [45, 54℄ is a 
entred Gaussian pro
ess with features that make it a

useful model in various appli
ations su
h as �nan
ial and teletra�
 modelling, image analysis and synthesis,

geophysi
s and more. These features in
lude self-similarity, long-range dependen
e and the ability to mat
h

any pres
ribed 
onstant lo
al regularity. Fra
tional Brownian motion depends on a parameter, usually

denoted by H and 
alled the Hurst exponent, that belongs to (0, 1). Its 
ovarian
e fun
tion RH reads:

RH(t, s) :=
γH
2

Ä
|t|2H + |s|2H − |t− s|2H

ä
,

where γH is a positive 
onstant. A normalized fBm is one for whi
h γH = 1. Obviously, when H = 1
2 , fBm

redu
es to standard Brownian motion. While fBm is a useful model, the fa
t that most of its properties

are governed by the single number H restri
ts its appli
ation in some situations. In parti
ular, its Hölder

exponent remains the same all along its traje
tory. Thus, for instan
e, long-range dependent fBm, whi
h

require H > 1
2 , must have smoother paths than Brownian motion. Multifra
tional Brownian motion [60, 8℄

was introdu
ed to over
ome these limitations. The basi
 idea is to repla
e the real H by a fun
tion t 7→ h(t)
ranging in (0, 1).

The 
onstru
tion of mBm is best understood through the introdu
tion of a fra
tional Brownian �eld. Fix a

positive real T . A fra
tional Brownian �eld on [0, T ]×(0, 1) is a Gaussian �eld, denoted (B(t,H))(t,H)∈[0,T ]×(0,1),

su
h that for everyH in (0, 1) the pro
ess (BH
t )t∈[0,T ], where B

H
t := B(t,H), is a fra
tional Brownian motion

with Hurst parameter H .

For a deterministi
 
ontinuous fun
tion h : [0, T ] → (0, 1), we 
all multifra
tional Brownian motion with

fun
tional parameter h the Gaussian pro
ess Bh := (Bh
t )t∈[0,T ] de�ned by Bh

t := B(t, h(t)). We say that

h is the regularity fun
tion of the mBm. The fra
tional �eld (B(t,H))(t,H)∈[0,T ]×(0,1) is termed normalized

when, for all H in (0, 1), (BH
t )t∈[0,T ] is a normalized fBm. In this 
ase we will also say that Bh

is normalized.

In order for mBm to posses interesting properties, we need some regularity of B(t,H) with respe
t to H .

More pre
isely, we will always assume that B(t,H) satis�es the following 
ondition:

∀T ∈ R
∗
+, ∀[c, d] ⊂ (0, 1), ∃(Λ, δ) ∈ (R∗

+)
2
su
h that

E[(B(t,H)−B(t,H ′))2] ≤ Λ |H −H ′|δ for every (t,H,H ′) in [0, T ]× [c, d]2.
(H)
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Under this assumption, and if the fun
tional parameter h is 
ontinuous, then the asso
iated mBm has a


ontinuous modi�
ation.

The 
lass of mBm is rather large, sin
e there is some freedom in 
hoosing the 
orrelations between the fBms


omposing the fra
tional �eld B. For de�niteness, we will mostly 
onsider in this work the so-
alled �well-

balan
ed� multifra
tional Brownian motion. Essentially the same analysis 
ould be 
ondu
ted with other

versions. More pre
isely, a well-balan
ed mBm is obtained from the �eld B(t,H) := 1
cH

∫
R

eitu−1
|u|H+1/2 W̃ (du)

where W̃ denotes a 
omplex-valued Gaussian measure (
f. [63℄ for more details).

We show in Proposition 3.5 that assumption (H) is satis�ed by the well-balan
ed fra
tional Brownian �eld

(in fa
t, it is veri�ed by all mBms 
onsidered so far in the literature).

The proof of the following proposition 
an be found in [4℄:

Proposition 2.1 (Covarian
e fun
tion of well-balan
ed mBm). The 
ovarian
e fun
tion Rh of well-balan
ed

mBm is given by

Rh(t, s) =
c2ht,s

ch(t)ch(s)

Å
1

2

(
|t|2ht,s + |s|2ht,s − |t− s|2ht,s

)ã
, (3)

where ht,s :=
h(t)+h(s)

2 and cx :=

Å
2π

Γ(2x+1) sin(πx)

ã 1
2

.

The other main properties of mBm are as follows: the pointwise Hölder exponent at any point t of B(h)
is

almost surely equal to h(t)∧βh(t), where βh(t) is the pointwise Hölder exponent of h at t [39℄. For a smooth

h, one thus may 
ontrol the lo
al regularity of the paths by the value of h. In addition, the in
rements of

mBm display long range dependen
e for all non-
onstant h(t) [4℄. Finally, when h is C1
, mBm is tangent to

fBm with exponent h(u) in the neighbourhood of any u in the following sense [33℄:

®
Bh

u+rt −Bh
u

rh(u)
; t ∈ [a, b]

´
law−−−−→

r→0+
{Bh(u)

t ; t ∈ [a, b]}.

These properties show that mBm is a more versatile model that fBm: in parti
ular, it is able to mimi
 in

a more faithful way lo
al properties of �nan
ial re
ords, Internet tra�
 and natural lands
apes [13, 49, 30℄

by mat
hing their lo
al regularity. This is important e.g. for purposes of dete
tion or real-time 
ontrol. The

pri
e to pay is of 
ourse that one has to deal with the added 
omplexity brought by having a fun
tional

parameter instead of a single number.

In general, the in
rements of multifra
tional Brownian motion are neither independent nor stationary. Sin
e

an mBm Bh
is an fBm of Hurst index H when h is 
onstant and equal to H , there is no risk of 
onfusion by

denoting BH
the fra
tional Brownian motion with Hurst index H .

We end this paragraph by noting that the use of a fra
tional Brownian �eld permits further generaliza-

tions: for instan
e, a multifra
tional pro
ess with random exponent is de�ned in [6℄, and a self-regulating

pro
ess is 
onsidered in [30℄.

3 Fun
tional quantization of multifra
tional Brownian motion

In this se
tion, we �rst present some ba
kground on fun
tional quantization and the numeri
al methods

used to obtain the quadrati
 optimal produ
t quantization of mBm. We provide some numeri
al results in

the spe
ial 
ase of the well-balan
ed multifra
tional Brownian motion for 
ertain examples of the fun
tional

parameter h. Then, in Se
tion 3.2, we investigate the rate of de
ay of the quantization error for mBm.

Se
tion 3.3 presents the fun
tional quantization-based 
ubature formulas that we use to devise a numeri
al

s
heme for the 
omputation of option pri
es in the proposed multifra
tional sto
hasti
 volatility model.
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3.1 Computation of the quantization

The quantization of a random variable X valued in a re�exive separable Bana
h spa
e (E, | · |) 
onsists in its

approximation by a random variable Y that is measurable with respe
t to X and that takes �nitely many

values in E. The resulting error of the dis
retization is usually measured by the Lp
norm of the di�eren
e

|X − Y |. If we settle on a �xed maximum 
ardinal N for Y (Ω), the minimization of the error redu
es to the

following optimization problem:

min
¶∥∥ |X − Y |

∥∥
p
, Y : Ω → E measurable with respe
t to X, card(Y (Ω)) ≤ N

©
. (4)

As Y is supposed to be measurable with respe
t to X , there exists a Borel map Proj : E → E valued

in a �nite subset Γ of E su
h that Y = Proj(X). The �nite subset Γ is 
alled the 
odebook. Hen
e if

Γ = {γ1, · · · , γN}, there exists a Borel partition C = {C1, · · · , CN} of E su
h that Proj =
N∑
i=1

γi1Ci . In

other words, Proj performs the pro
ess of mapping the 
ontinuous set X(Ω) to the �nite set Γ. Let ProjΓ
denote a nearest neighbour proje
tion on Γ. Clearly,

|X − ProjΓ(X)| ≤ |X − Proj(X)| so that

∥∥|X − ProjΓ(X)|
∥∥
p
≤
∥∥|X − Proj(X)|

∥∥
p
.

Hen
e, in order to minimize the quantization error, it is optimal to use a nearest neighbour proje
tion on

the 
odebook Γ. A solution of (4) is 
alled an Lp
-optimal quantizer of X . An elementary property of an

L2
-optimal quantizer is stationarity: E[X |Y ] = Y . We denote by EN,p(X, | · |) the minimal Lp

quantization

error for the random variable X and the norm | · |:

EN,p(X, | · |) = min
¶∥∥|X − Y |

∥∥
p
, Y measurable with respe
t to X and |Y (Ω)| ≤ N

©

We now assume that X is a bi-measurable sto
hasti
 pro
ess on [0, T ] verifying
∫ T

0
E
[
|Xt|2

]
dt < ∞,

that we see as a random variable valued in the Hilbert spa
e H = L2([0, T ]). Suppose that its 
ovarian
e

fun
tion ΓX
is 
ontinuous. In [50℄, it is shown that, in the 
entred Gaussian 
ase, linear subspa
es U of H

spanned by N -stationary quantizers 
orrespond to prin
ipal 
omponents of X , in other words, are spanned

by eigenve
tors of the 
ovarian
e operator of X . Thus, the quadrati
 optimal quantization of Gaussian

pro
esses 
onsists in using its Karhunen-Loève de
omposition

(
eXn , λ

X
n

)
n≥1

.

To perform optimal quantization, the Karhunen-Loève expansion is �rst trun
ated at a �xed orderm and then

the R
m
-valued Gaussian ve
tor 
onstituted of the m �rst 
oordinates of the pro
ess on its Karhunen-Loève

de
omposition is quantized. To rea
h optimal quantization, we have to determine both the optimal rank

of trun
ation dX(N) (the quantization dimension) and the optimal dX(N)-dimensional Gaussian quantizer


orresponding to the �rst 
oordinates,

dX(N)⊗
j=1

N
(
0, λXj

)
. We have the following representation of the quadrati


distortion EN (X) := EN,2

(
X, | · |L2([0,T ])

)
:

EN(X)2 =
∑

j≥m+1

λXj + EN
(

m⊗

j=1

N
(
0, λXj

)
)2

.

From a numeri
al viewpoint, we are thus 
onfronted on the one hand with the �nite-dimensional quan-

tization of the Gaussian distribution

m⊗
j=1

N
(
0, λXj

)
and on the other hand with the numeri
al evaluation

of the �rst Karhunen-Loève eigenfun
tions

(
eXn
)
1≤n≤dX(N)

. Various numeri
al algorithms have been devel-

oped to deal with the �rst point. Let us mention Lloyd's algorithm and the Competitive Learning Ve
tor

Quantization (CLVQ). A review of these methods is available in [57℄. As far as the evaluation of the �rst

Karhunen-Loève eigenfun
tions is 
on
erned, 
losed-expressions are available for standard Brownian motion,
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standard Brownian bridge and Ornstein-Uhlenbe
k pro
ess. Other examples of expli
it Karhunen-Loève ex-

pansions may be found in [26℄ and [62℄. In the general 
ase, the so-
alled Nyström method for approximating

the solution of the asso
iated integral equation may be used. It reads

∫ T

0

ΓX(·, s)eXk (s)ds = λXk e
X
k , k ≥ 1, (5)

where both the eigenvalues and the eigenve
tors have to be determined. The Nyström method relies on

the use of a quadrature s
heme to approximate the integral, so that it turns into a matrix eigensystem.

When dealing with the midpoint quadrature rule, and for su�
iently regular kernels ΓX
, the error admits

an asymptoti
 expansion in the form of the sum of even powers of the step size, for both the eigenvalues

and the eigenfun
tions. We take advantage of this asymptoti
 expansion by using Ri
hardson-Romberg

extrapolation methods. This method has been ben
hmarked against the Karhunen-Loève eigensystems of

standard Brownian motion, Brownian bridge and Ornstein-Uhlenbe
k pro
ess in [21℄.

Instead of using an optimal quantization for the distribution

dX(N)⊗
j=1

N
(
0, λXj

)
, another possibility is to

use a produ
t quantization, that is to use the Cartesian produ
t of the optimal quadrati
 quantizers of the

standard one-dimensional Gaussian distributions N
(
0, λXj

)
1≤j≤dX (N)

. In the 
ase of independent marginals,

this yields a stationary quantizer, i.e. a quantizer Y of X whi
h satis�es E[X |Y ] = Y . This property, shared
with optimal quantizers, results in a 
onvergen
e rate of a higher order for the quantization-based 
ubature

s
heme, as explained in [58℄. An advantage of this approa
h is that one-dimensional Gaussian quantization

is a fast pro
edure.

In [57℄, deterministi
 optimization methods (e.g. Newton-Raphson) are shown to 
onverge rapidly to the

unique optimal quantizer of the one-dimensional Gaussian distribution. A sharply optimized database of

quantizers of standard univariate and multivariate Gaussian distributions is available for download on the

web site [59℄, whi
h is devoted to optimal quantization. One still has to determine the quantization level

for ea
h dimension to obtain optimal produ
t quantization. In this 
ase, the minimization of the distortion

be
omes:

Ä
EprodN (X)

ä2
:= min





d∑

j=1

E2
Nj

(
N
(
0, λXj

))
+
∑

j≥d+1

λXj , N1 × · · · ×Nd ≤ N, d ≥ 1



 . (6)

A solution of (6) is 
alled an optimal K-L produ
t quantizer. This problem 
an be solved by the �blind

optimization pro
edure�, whi
h 
onsists in 
omputing the 
riterion for every possible de
ompositionN1×· · ·×
Nd with N1 ≥ · · · ≥ Nd. The result of this pro
edure 
an be stored for future use. Optimal de
ompositions

for a wide range of values of N for both Brownian motion and Brownian bridge are available on the web site

[59℄. Another fa
t on quadrati
 fun
tional produ
t quantization is that it is shown to be rate-optimal under


ertain assumptions on the K-L eigenvalues (see Theorem 3.1).

Quadrati
 produ
t quantizers of fBms and well-balan
ed mBms for di�erent H and h are displayed on

Figures 4 and 5. A �xed produ
t de
omposition is used for simpli
ity.

These graphs re�e
t, to some extent, the features of the quantized pro
ess, in parti
ular its 
orrelation

and regularity properties:

In the 
ase of fBm (Figure 4), when H in
reases, the rate of de
ay of the Karhunen-Loève eigenvalues

also in
reases (and so does the pathwise Hölder regularity of the underlying pro
ess), so that even though we

do not 
hange the quantization dimension in this example, the 
ontribution of higher-order Karhunen-Loève

eigenvalues de
reases. In Figure 4, one 
an see that the 
urves of the fun
tional quantizer lo
alize around

the quantization of the �rst Karhunen-Loève 
oordinate when H = 0.75, while this is not the 
ase when

H = 0.25.

In addition, the distribution of the 
urves on the plane is related to the fa
t that the almost sure Hausdorf

dimension of the paths of fBm is 2-H: for small H , we expe
t the set of 
urves to be more spa
e-�lling than
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Figure 4: Quadrati
 5× 2× 2-produ
t quantizer of fBm on [0, 1] with H = 0.25 (left) and H = 0.75 (right).
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Figure 5: Quadrati
 5× 2 × 2-produ
t quantizer of mBm on [0, 1] with h(t) := 0.1 + 0.8t (left) and h(t) :=
0.9− 0.8t (right).

for large H , a feature that 
an be indeed be veri�ed on the �gure. In addition, the long-term 
orrelation of

fBm for H > 1/2, whi
h results in paths typi
ally having strong trends, translates here into 
urves whi
h are

roughly monotonous. Conversely, the negative 
orrelations whi
h 
hara
terizes the 
ase H < 1/2 is re�e
ted
in the more os
illatory behaviour of the 
urves in the left pane.

The 
ase of mBm (Figure 5) makes even 
learer the relation between the properties of the pro
ess and

the optimal quantizer. In the right pane of Figure 5, the fun
tion h de
reases linearly from 0.9 to 0.1. One

an see that, for small t, both the distribution of the 
urves and their trend look like the ones of fBm with

large H . As t in
reases, the 
urves be
ome more spa
e-�lling and os
illatory, in agreement with the fa
t

that, for t 
lose to 1, the 
orresponding mBm has larger lo
al Hausdor� dimension. Similar remarks hold

for the 
ase where h is an in
reasing fun
tion (right pane of Figure 5).

Another way of interpreting these �gures is to re
all that mBm is tangent, at ea
h t, to fBm with exponent

H = h(t). The behaviour of the 
urves on Figure 5 is a translation of this fa
t in the quantization domain.

Finally, note that the shape of the 
onvex envelopes in ea
h of the four �gures roughly mat
hes the time

evolution of the varian
es of the 
orresponding pro
esses, i.e. t0.25, t0.75, t0.1+0.8t
and t0.9−0.8t

.
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3.2 Rate of de
ay of the quantization error for mBm

The rate of de
ay of the quadrati
 fun
tional quantization error was �rst investigated in [50℄. More pre
ise

results were then established in [51℄. These results rely on assumptions on the asymptoti
 behaviour of

the Karhunen-Loève eigenvalues of the 
onsidered pro
ess. In Subse
tion 3.2.1, we re
all the main result

involving the rate of de
ay of these eigenvalues, leading to sharp rates of 
onvergen
e for the quantization

of fBm.

Unfortunately, su
h asymptoti
s for the Karhunen-Loève eigenvalues are not known at this time in the


ase of mBm. However, sin
e the regularity of mBm is known, one may use another, less pre
ise, type of

results: these yield an upper estimate on the rate of de
ay of the quantization error [53℄. This is explained

in Subse
tion 3.2.2.

In the following, for two positive sequen
es (xn)n∈N and (yn)n∈N, we write xn ∼
n→∞

yn if lim
n→∞

xn

yn
= 1. The

symbol xn .
n→∞

yn means that lim
n→∞

xn

yn
≤ 1. Finally, xn ≍

n→∞
yn means that xn = O(yn) and yn = O(xn)

as n→ ∞.

3.2.1 Sharp rates based on asymptoti
s of Karhunen-Loève eigenvalues

Re
all the following well-known de�nition:

De�nition 1 (Regularly varying fun
tion at in�nity). A measurable fun
tion φ : (s,∞) → (0,∞), (s > 0)

is regularly varying at in�nity with index b ∈ R if for every t > 0, lim
x→∞

φ(tx)
φ(x) = tb.

Let X be a bi-measurable 
entred Gaussian pro
ess on [0, T ] with a 
ontinuous 
ovarian
e fun
tion ΓX
and

su
h that

∫ T

0
E[X2

s ]ds <∞. Denote by

(
eXn , λ

X
n

)
n≥1

its Karhunen-Loève eigensystem.

Theorem 3.1 (Quadrati
 quantization error asymptoti
s [51℄). Assume that λXn ∼ φ(n) as n → ∞, where

φ : (s,∞) → (0,∞) is a de
reasing regularly varying fun
tion of index −b < −1 and s > 0. Set ψ(x) := 1
xφ(x) .

Then

EN (X) ∼
ÇÅ

b

2

ãb−1 b

b− 1

å1/2

ψ(log(N))−1/2
as N → ∞.

Moreover, the optimal produ
t quantization dimension mX(N) veri�es mX(N) ∼ 2
b log(N) as N → ∞,

and the optimal produ
t quantization error EprodN (X) of level N satis�es

EprodN (X) .

ÇÅ
b

2

ãb−1 b

b− 1
+ C(1)

å1/2

ψ(log(N))−1/2
as N → ∞,

where C(1) is a universal positive 
onstant.

Though the optimal produ
t quantization is not asymptoti
ally optimal, it still provides a rate-optimal

sequen
e of quantizers. In the 
ase where b = 1, a similar result is true, with the additional property that

the optimal produ
t quantization does yield an asymptoti
ally optimal quadrati
 quantization error.

The 
ase of fra
tional Brownian motion

In [50, 17℄, it is shown that the Karhunen-Loève eigenvalues of fBm on [0, T ] verify

λB
H

n ∼ νH
n2H+1

as n→ ∞,

where νH is a positive 
onstant. Thus, fBm satis�es the hypotheses of Theorem 3.1 and

EN
(
BH
)
∼ KH

log(N)H
as N → ∞ for some KH > 0, and EprodN

(
BH
)
≍ 1

log(N)H
as N → ∞.
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3.2.2 Mean regularity and domination of the fun
tional quantization rate

We re
all the de�nition of regular variation at 0:

De�nition 2 (Regularly varying fun
tion at zero). A measurable fun
tion φ : (0, s) → (0,∞), (s > 0) is

regularly varying at 0 with index b ≥ 0 if for every t > 0, lim
x→0

φ(tx)
φ(x) = tb.

De�nition 3 (The φ-Lips
hitz assumption). Let X be a bi-measurable pro
ess on [0, T ]. We say that X
satis�es the φ-Lips
hitz assumption for ρ > 0, whi
h we denote by (Lφ,ρ), if there is a non-de
reasing fun
tion
φ : R+ → [0,∞], 
ontinuous at 0 with φ(0) = 0, su
h that

(Lφ,ρ) ≡





∀(s, t) ∈ [0, T ]2,E [|Xt −Xs|ρ] ≤ (φ(|t − s|))ρ , if ρ ≥ 1

∀t ∈ [0, T ], ∀h ∈ (0, T ],E

ñ
sup

t≤s≤(t+h)∧T

|Xs −Xt|ρ
ô
≤ (φ(h))

ρ
if 0 < ρ < 1.

Remark 1. The φ-Lips
hitz assumption implies that E

î
|X |ρLρ([0,T ])

ó
< ∞ so that P-almost surely, t 7→ Xt

lies in Lρ([0, T ]).

Theorem 3.2 (Mean regularity and quantization rate). Let X be a bi-measurable pro
ess on [0, T ] su
h that

Xt ∈ Lρ
for every t ∈ [0, T ], ρ > 0. Assume that X satis�es (Lφ,ρ) where φ is regularly varying at 0 with

index b. Then

∀(r, p) ∈ [0, ρ]2, EN,r

(
X, | · |Lp([0,T ])

)
≤ Cr,p

ß
φ(1/ log(N)), if b > 0,
ψ(1/ log(N)), if b = 0,

with ψ(x) :=
(∫ x

0
(φ(ξ))(r∧1)

ξ dξ
) 1

r∧1

, assuming in addition that

∫ x

0
(φ(ξ))(r∧1)

ξ dξ <∞ if b = 0.

In parti
ular, if φ(u) = cub, b > 0, then

EN,r

(
X, | · |Lp([0,T ])

)
= O(log(N)−b).

The 
ase of multifra
tional Brownian motion

Re
all that a fun
tion h is said to be β-Hölder 
ontinuous (with β > 0) if there exists η in R
∗
+ su
h that,

forall (s, t) in [0, T ]2, |h(s)− h(t)| ≤ η |s− t|β .

Theorem 3.3 (L2
-mean regularity of multifra
tional Brownian motion). Let Bh

be an mBm with fun
tional

parameter h satisfying assumption (H). Assume that h is β-Hölder 
ontinuous, then there exists a positive


onstant M su
h that

∀(s, t) ∈ [0, T ]2, E

[(
Bh

t −Bh
s

)2] ≤M |t− s|
(
2 inf

u∈[0,T ]
h(u)∧βδ

)
, (7)

where δ is given in assumption (H).

Proof: We may assume that the fra
tional �eld (B(t,H))(t,H)∈[0,T ]×[c,d] is normalized. For (t, s) in [0, T ]2:

E

[(
Bh

t −Bh
s

)2] ≤ 2 E

î
(B(t, h(t))−B(s, h(t)))2

ó
+ 2 E

î
(B(s, h(t)) −B(s, h(s)))2

ó

≤ 2
Ä
|t− s|2h(t) + Λ |h(t)− h(s)|δ

ä
≤ 2
Ä
|t− s|2H1 (1 + T 2(H2−H1)) + Λ ηβ |t− s|βδ

ä

≤ 2 (1 + T 2(H2−H1)) (1 + Λ ηβ)
(
|t− s|2H1 + |t− s|βδ

)
≤M |t− s|2H1∧βδ,

where H1 := inf
u∈[0,T ]

h(u), H2 := sup
u∈[0,T ]

h(u) and M := 2(1 + T 2(H2−H1)) (1 + T 2H1∨βδ−2H1∧βδ) (1 + Λ ηβ).�
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Corollary 3.4 (Upper bound on the quantization error for multifra
tional Brownian motion). With the

same notations and assumptions as in Theorem 3.3:

EN,r

(
Bh, | · |Lp([0,T ])

)
= O

Ä
log(N)−(H1∧ βδ

2 )
ä
,

for every (r, p) in (R+)
2
.

Proof: Sin
e Bh
is a Gaussian pro
ess, Theorem 3.3 shows that Bh

ful�ls the φ-Lips
hitz assumption for

every integer ρ of the form ρ := 2p where p is a positive integer and for the 
ontinuous fun
tion φρ de�ned

on R+ by φρ(0) := 0 and φρ(x) := (κρ/2)
1/2ρ

√
M xH1∧ βδ

2
. We have denoted, for n in N, κn the number

su
h that E
[
Y 2n

]
= κn E

[
Y 2
]n

for the 
entred Gaussian random variable Y . It is 
lear that φρ is regularly

varying with index H1 ∧ βδ
2 , whi
h is positive. The result then follows from Theorem 3.2. �

Remark 2. Corollary 3.4 extends to every pro
ess V h := (V h
t )t∈[0,T ], of the form V h

t := Z(t, h(t)) where

Z := (Z(t,H))(t,H)∈R×[H1,H2] is a Gaussian �eld su
h that one 
an �nd (Λ, γ, δ) in (R∗
+)

3
with

∀(s, t,H,H ′) ∈ [0, T ]2 × [H1, H2]
2, E

î(
Z(t,H)− Z(s,H ′)

)2ó ≤ Λ (|t− s|γ + |H −H ′|δ),

In this 
ase, for every (r, p) in (R∗
+)

2
, we get EN,r

(
V h, | · |Lp([0,T ])

)
= O

(
log(N)−(

γ
2∧

βδ
2 )
)
.

Proposition 3.5. The well-balan
ed mBm Bh
t := 1

ch(t)

∫
R

eitξ−1
|u|h(t)+1/2 W̃ (dξ) satis�es assumption (H).

Proof: One 
omputes:

IH,H′

t := E

î
(B(t,H)−B(t,H ′))

2
ó
=

∫

R

∣∣∣∣
eitξ − 1

cH |ξ|H+1/2
− eitξ − 1

cH′ |ξ|H′+1/2

∣∣∣∣
2

du

=

∫

R

∣∣∣∣
eitξ − 1

ξ

∣∣∣∣
2 ∣∣∣ 1

cH
|ξ|1/2−H − 1

cH′
|ξ|1/2−H′

∣∣∣
2
dξ. (8)

For every ξ in R
∗
, the map fξ : [c, d] → R+, de�ned by fξ(H) := 1

cH
|ξ|1/2−H

is C1
sin
e H 7→ cH is C1

on

(0, 1). Thus there exists a positive real D su
h that

∀(ξ,H) ∈ R
∗ × [c, d], |f ′

ξ(H)| ≤ D |ξ|1/2−H (1 + | ln(|ξ|)|) ≤ D
Ä
|ξ|1/2−c + |ξ|1/2−d

ä
(1 + | ln(|ξ|)|).

Thanks to the mean-value theorem, (8) yields

IH,H′

t ≤ D2 |H −H ′|2
∫

R

|eitξ − 1|2
|ξ|2

Ä
|ξ|1/2−c + |ξ|1/2−d

ä2
(1 + | ln(|ξ|)|)2 dξ

≤ D2 |H −H ′|2
Ç
23
∫

|ξ|>1

(1 + | ln(|ξ|)|)2
|ξ|1+2c

dξ + (2t)2
∫

|ξ|≤1

|ξ|1−2d (1 + | ln(|ξ|)|)2 dξ
å

≤ (23 + T 2) D2

Ç ∫

|ξ|>1

(1 + | ln(|ξ|)|)2
|ξ|1+2c

dξ +

∫

|ξ|≤1

|ξ|1−2d (1 + | ln(|ξ|)|)2 dξ
å

|H −H ′|2.

Sin
e the two integrals in the last line are �nite, (H) is veri�ed with δ = 2. �

Remark 3 (Quantization error and small ball probability). In the 
ase of Gaussian measures, upper bounds

and lower bounds of the quantization error 
an be related to lower and upper bounds for small ball probabilities

respe
tively [28℄, and a 
onverse relationship was obtained in [34℄. As a 
onsequen
e, the knowledge of

logarithmi
 small ball asymptoti
s gives asymptoti
s for the quantization error. Let us mention that tight

asymptoti
s of the L∞
small ball probability were obtained for a spe
ial 
ase of multifra
tional Brownian

motion in [5℄.
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3.3 Quantization-based 
ubature

In this se
tion, we �rst re
all the error bounds on quantization-based 
ubature formulas. We then handle

the 
ase of exponentials of 
ontinuous 
entred Gaussian pro
esses.

3.3.1 Basi
 formula and related inequalities in the 
ase of Lips
hitz 
ontinuous fun
tionals

The idea of quantization-based 
ubature methods is to approximate the distribution of the random variable

X by the distribution of a quantizer Y of X . As Y is a dis
rete random variable, we have PY =
N∑
i=1

piδyi .

Therefore, if F : E → R is a Borel fun
tional,

E[F (Y )] =

N∑

i=1

piF (yi). (9)

Hen
e, the weighted dis
rete distribution (yi, pi)1≤i≤N of Y allows us to 
ompute the sum (9). We review

some error bounds that 
an be derived when approximating E[F (X))] by (9). See [58℄ for more details.

1. If X ∈ L2
, Y a quantizer of X of size N and F is Lips
hitz 
ontinuous, then

|E[F (X)]− E[F (Y )]| ≤ [F ]
Lip

‖X − Y ‖2. (10)

where [F ]
Lip

is the Lips
hitz 
onstant of F . In parti
ular, if (YN )N≥1 is a sequen
e of quantizers su
h

that lim
N→∞

‖X − YN‖2 = 0, then the distribution

N∑
i=1

pNi δxN
i

of YN weakly 
onverges to the distribution

PX of X as N → ∞.

2. If Y is a stationary quantizer of X, i.e. Y = E[X |Y ], and F is di�erentiable with a Lips
hitz 
ontinuous

derivative DF , then
|E[F (X)]− E[F (Y )]| ≤ [DF ]

Lip

‖X − Y ‖22, (11)

where [DF ]
Lip

is the Lips
hitz 
onstant of DF . If F is twi
e di�erentiable and D2F is bounded, then

we 
an repla
e [DF ]
Lip

by

1
2‖D2F‖∞.

3. If F is a semi-
ontinuous 
onvex fun
tional and Y is a stationary quantizer of X,

E[F (Y )] ≤ E[F (X)]. (12)

This is a simple 
onsequen
e of Jensen's inequality. Indeed,

E[F (Y )]
Stationarity

= E[F (E[X |Y ])]
Jensen

≤ E[E[F (X)|Y ])] = E[F (X)].

Remark 4. In the in�nite-dimensional 
ase, 
onvexity does not imply 
ontinuity. In in�nite-dimensional

Bana
h spa
es, a semi-
ontinuity hypothesis is ne
essary for Jensen's inequality whi
h is the reason why we

had to make this additional hypothesis on F . See [64℄ for more details.

3.3.2 The 
ase of exponentials of 
ontinuous 
entred Gaussian pro
esses

Let (Xs)s∈[0,T ] be a 
ontinuous 
entred Gaussian pro
ess on [0, T ]. Then the 
ovarian
e fun
tion of X is

also 
ontinuous. In addition, Fernique's theorem entails that E

î∫ T

0
X2

sds
ó
is �nite. We view X as a random

variable valued in the separable Bana
h spa
e (C([0, T ],R), ‖ · ‖∞). Let “X be a stationary quantizer of X .
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By the mean-value theorem, for all (x, y) ∈ R
2, |ex − ey| ≤ e|x|+|y||x− y|. Consequently, for p ≥ 1, using

Hölder's inequality:

E

[∫ T

0

∣∣∣eXs − eX̂s

∣∣∣
p

ds
]1/p

≤ E

ï∫ T

0
e
p|Xs|+p

∣∣X̂s

∣∣ ∣∣∣Xs − “Xs

∣∣∣
p
ds

ò1/p

≤ E

ï∫ T

0
epp̃|Xs|epp̃

∣∣X̂s

∣∣
ds

ò 1
2pp̃

E

ï∫ T

0

∣∣∣Xs − “Xs

∣∣∣
pq̃

ds

ò 1
2pq̃

,

where (p̃, q̃) ∈ (1,∞)2 are 
onjugate exponents. For ǫ > 0, we 
hoose (p̃, q̃) su
h that pq̃ = p+ ǫ. This gives

q̃ = 1 + ǫ/p and p̃ = 1 + p/ǫ.

By S
hwarz's inequality:

E

ñ∫ T

0

∣∣∣eXs − eX̂s

∣∣∣
p

ds

ô1/p
≤ E

ñ∫ T

0

e2pp̃|Xs|ds

ô 1
2pp̃

E

ñ∫ T

0

e
2pp̃
∣∣X̂s

∣∣
ds

ô 1
2pp̃ ∥∥∥X − “X

∥∥∥
p+ǫ

.

De�ne the map φ : C([0, T ],R) → C([0, T ],R) by φ(f) :=
∫ T

0
e2pp̃|f(s)|ds. It is easily shown that φ is 
onvex

and 
ontinuous on (C([0, T ],R), ‖ · ‖∞). Hen
e, Inequality (12) yields

E

ñ∫ T

0

e
2pp̃
∣∣X̂s

∣∣
ds

ô
≤ E

ñ∫ T

0

e2pp̃|Xs|ds

ô
.

Finally

E

ñ∫ T

0

∣∣∣eXs − eX̂s

∣∣∣
p

ds

ô1/p
≤ E

ñ∫ T

0

e2pp̃|Xs|ds

ô 1
pp̃

︸ ︷︷ ︸
<∞

∥∥∥X − “X
∥∥∥
p+ǫ

. (13)

We shall apply (13) with p = 2 − ǫ in Se
tion 5.2: this will allow us to 
ontrol the L2−ǫ
quantization

error of the exponential of a 
entred 
ontinuous Gaussian pro
ess X by the L2
quantization of X .

3.3.3 Ri
hardson-Romberg extrapolation

The a

ura
y of quantization-based 
ubature formulas 
an be dramati
ally improved by the use of Ri
hardson-

Romberg extrapoltion methods, with respe
t to the quantization error, of with respe
t to the quantization

level. Here is a brief presentation of these methods.

With respe
t to the quantization error

In the general setting of a non-uniform random variableX , a quadrati
 optimalN -quantizer YN of X and a C1

fun
tional with Lips
hitz 
ontinuous derivative, Equation (11) does not provide a true asymptoti
 expansion

whi
h would allow one to use a Ri
hardson-Romberg expansion, but it suggests the use a higher-order Taylor

expansion of F (X)− F (YN ) to get one.

It follows from Taylor's formula that there exists a ve
tor ζ ∈ [X,YN ] su
h that

E[F (X)] = E [F (YN )] + E [〈DF (YN ), X − YN 〉]︸ ︷︷ ︸
=E[DF (YN ).E[X−YN |YN ]]=0 by stationarity.

+ 1
2E
[
D2F (YN )(X − YN )⊗2

]

+ 1
6E
[
ζ(X − YN )⊗3

]
+ o

(
E
[
|X − YN |3

])

= E [F (YN )] + 1
2E
[
D2F (YN )(X − YN )⊗2

]
+O
Ä
E

î
|X − YN |3

óä
.

(14)
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In [35℄, it is proved that the asymptoti
s of the Ls
quantization error indu
ed by a sequen
e of Lr

-optimal

quantizers remains rate-optimal in the 
ase of probability distributions on R
d
, with s < r + d for a 
lass of

distributions in
luding the Gaussian distribution. This leads to E
[
|X − YN |3

]
= O

(
E
[
|X − YN |2

] 3
2

)
. This

holds e.g. for Brownian motion.

Unfortunately, no sharp equivalen
e between ‖X − YN‖22 and E
[
D2F (YN )(X − YN )⊗2

]
has been estab-

lished yet. Still, Equation (14) suggests to use a Ri
hardson-Romberg extrapolation with respe
t to the

quantization error E
2
N := ‖X − YN‖2. The two-steps extrapolation between N = k and N = l leads to

approximate E[F (X)] by the quantity

E[F (Yl)]E
2
k − E[F (Yk)]E

2
l

E2
k − E2

l

. (15)

Although this kind of Ri
hardson-Romberg extrapolation has not re
eived a full theoreti
al justi�
ation yet,

it does dramati
ally in
rease the e�
ien
y of quantization-based 
ubature formulas.

With respe
t to the quantization level

When the value of E
2
k is not known, one may rely on an asymptoti
 expansion with respe
t to the quantization

level.

Remark 5 (Romberg extrapolation with respe
t to the quantization level). In Se
tion 3.2, we have seen that

under some assumptions on the eigenvalues of the 
onvergen
e operator, the rate of 
onvergen
e of optimal

quantizers and K-L optimal produ
t quantizers is (ln(N)−α) for some α ∈ (0, 1). Repla
ing the distortion

EN by its asymptoti
s

1
ln(N)α as N → ∞ in Equation (15) suggests to approximate E[F (X)] by the quantity

E[F (Yl)](ln l)
2α − E[F (Yk)](ln k)

2α

(ln l)2α − (ln k)2α
. (16)

Multidimensional Ri
hardson-Romberg extrapolation

Let X1
and X2

be two independent random variables. We wish to estimate the expe
tation E
[
F
(
X1, X2

)]

for some regular fun
tional F . In that view, one may use a 
ubature based on a produ
t quantizationÄ“X1, “X2
ä
of (X1, X2), and perform a multidimensional Ri
hardson-Romberg extrapolation. This amounts

to performing two Ri
hardson-Romberg extrapolations as des
ribed already, one related to the quantization

error of X1
between quantization levels N1 andM1, and one related to the quantization error of X2

between

quantization levels N2 and M2. This leads to approximating E[F (X1, X2)] by the quantity

E
2
M1

E
2
M2
FN1,N2 − E

2
N1

E
2
M2
FM1,N2 − E

2
M1

E
2
N2
FN1,M2 + E

2
N1

E
2
N2
FM1,M2

(
E2
M1

− E2
N1

) (
E2
M2

− E2
N2

) , (17)

where F p,q
denotes the estimated expe
tation obtained with the quantization-based 
ubature and quantiza-

tion levels of p and q for X1
and X2

respe
tively. In other words, F p,q
is de�ned by

F p,q := E

[
F
(”X1

p
,”X2

q)]

where

”X1
p
,

”X2
q
are quantizers of levels p and q for X1

and X2
respe
tively. In Equation (17), EMi and ENi

denote the quadrati
 quantization error of level Mi and Ni for Xi.

4 Sto
hasti
 
al
ulus with respe
t to mBm

From now on and until the end of the work, we �x our mBm to be the well-balan
ed multifra
tional Brownian

motion de�ned in Se
tion 2. In addition, we will always assume that h is a C1
fun
tion with derivative

bounded on R.
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4.1 Some ba
kgrounds on white noise theory

This se
tion provides the ne
essary ba
kground on white noise theory to de�ne a sto
hasti
 integral and to

handle S.D.E.s driven by mBm.

De�ne the probability spa
e as Ω := S
′

(R) and let F := B(S
′

(R)) be the σ-algebra of Borel sets.
There exists a probability measure µ su
h that, for every f in L2(R), the map 〈·, f〉 : Ω → R de�ned by

〈·, f〉 (ω) = 〈ω, f〉 (where 〈ω, f〉 is by de�nition ω(f), i.e the a
tion of the distribution ω on the fun
tion f)
is a 
entred Gaussian random variable with varian
e equal to ‖f‖2L2(R) under µ. For every n in N, denote

en(x) := (−1)n π−1/4(2nn!)−1/2ex
2/2 dn

dxn (e
−x2

) the nth Hermite fun
tion. Let (| · |p)p∈Z be the family of

norms de�ned by |f |2p :=
+∞∑
k=0

(2k + 2)2p 〈f, ek〉2L2(R), for all (p, f) in Z × L2(R). The operator A de�ned on

S (R) by A := − d2

dx2 + x2 + 1 admits the sequen
e (en)n∈N
as eigenfun
tions and the sequen
e (2n+ 2)n∈N

as eigenvalues.

As is 
ustomary, we denote (L2) the spa
e L2(Ω,G, µ) where G is the σ-�eld generated by (〈·, f〉)f∈L2(R).

For every random variable Φ of (L2) there exists, a

ording to the Wiener-It� theorem, a unique sequen
e

(fn)n∈N
of fun
tions fn in L̂2(Rn) su
h that Φ 
an be de
omposed as Φ =

+∞∑
n=0

In(fn), where L̂
2(Rn) denotes

the set of all symmetri
 fun
tions f in L2(Rn) and In(f) denotes the nth multiple Wiener-It� integral of f with

the 
onvention that I0(f0) = f0 for 
onstants f0. Moreover we have the equality E[Φ2] =
+∞∑
n=0

n!‖fn‖2L2(Rn)

where E denotes the expe
tation with respe
t to µ. For any Φ :=
+∞∑
n=0

In(fn) satisfying the 
ondition

+∞∑
n=0

n! |A⊗nfn|20 < +∞, de�ne the element Γ(A)(Φ) of (L2) by Γ(A)(Φ) :=
+∞∑
n=0

In(A
⊗nfn), where A

⊗n

denotes the nth tensor power of the operator A (see [43, Appendix E℄ for more details about tensor produ
ts

of operators). The operator Γ(A) is densely de�ned on (L2). It is invertible and its inverse Γ(A)
−1

is

bounded. Let us denote ‖ϕ‖20 := ‖ϕ‖2(L2) for ϕ in (L2) and let Dom(Γ(A)n) be the domain of the nth

iteration of Γ(A). De�ne the family of norms (‖ · ‖p)p∈Z
by:

‖Φ‖p := ‖Γ(A)pΦ‖0 = ‖Γ(A)pΦ‖(L2), ∀p ∈ Z, ∀Φ ∈ (L2) ∩Dom(Γ(A)p).

For any p in N, let (Sp) := {Φ ∈ (L2) : Γ(A)pΦ exists and belongs to (L2)} and de�ne (S−p) as the


ompletion of the spa
e (L2) with respe
t to the norm ‖ · ‖−p. As in [46℄, we let (S) denote the proje
tive
limit of the sequen
e ((Sp))p∈N and (S)∗ the indu
tive limit of the sequen
e ((S−p))p∈N. The spa
e (S) is

alled the spa
e of sto
hasti
 test fun
tions and (S)∗ the spa
e of Hida distributions. One 
an show that,

for any p in N, the dual spa
e (Sp)
∗
of Sp is (S−p). Thus we will write (S−p), in the sequel, to denote the

spa
e (Sp)
∗
. Note also that (S)∗ is the dual spa
e of (S). We will note 〈〈·, ·〉〉 the duality bra
ket between

(S)∗ and (S). If Φ belongs to (L2) then we have the equality 〈〈Φ, ϕ〉〉 = 〈Φ, ϕ〉(L2) = E[Φ ϕ]. Sin
e we have
de�ned a topology given by a family of norms on the spa
e (S)∗ it is possible to de�ne a derivative and an

integral in (S)∗. A fun
tion Φ : R → (S)∗ is 
alled a sto
hasti
 distribution pro
ess, or an (S)∗-pro
ess, or
a Hida pro
ess.

The Hida pro
ess Φ is said to be di�erentiable at t0 if lim
r→0

r−1 (Φ(t0 + r) − Φ(t0)) exists in (S)∗.
Moreover we may also de�ne an integral of an Hida pro
ess:

Theorem 4.1 (Integral in (S)∗). Assume that Φ : R → (S)∗ is weakly in L1(R, dt), i.e. assume that for all

ϕ in (S), the mapping u 7→ 〈〈Φ(u), ϕ〉〉 from R to R belongs to L1(R, dt). Then, there exists a unique element

in (S)∗, denoted by

∫
R
Φ(u)du, su
h that

≠≠∫

R

Φ(u)du, ϕ

∑∑
=

∫

R

〈〈Φ(u), ϕ〉〉 du for all ϕ in (S). (18)

One says that Φ is (S)∗-integrable on R or integrable on R in the Pettis sense.
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For every f in L2(R), de�ne the Wi
k exponential of 〈·, f〉, noted : e〈·,f〉 :, as the (L2) random variable

equal to e〈·,f〉−
1
2 |f |

2
0
. The S-transform of an element Φ of (S∗), noted S(Φ), is de�ned to be the fun
tion from

S (R) to R given by S(Φ)(η) :=
〈〈
Φ, : e〈·,η〉

〉〉
for every η in S (R). Finally for every (Φ,Ψ) ∈ (S)∗ × (S)∗,

there exists a unique element of (S)∗, 
alled the Wi
k produ
t of Φ and Ψ and noted Φ ⋄ Ψ, su
h that

S(Φ ⋄Ψ)(η) = S(Φ)(η) S(Ψ)(η); for every η in S (R).
The map S : Φ 7→ S(Φ), from (S)∗ to (S)∗, is inje
tive. Furthermore, let Φ : R → (S)∗ be a �xed (S)∗

pro
ess. If Φ is (S)∗-integrable over R then for all η in S (R), S(
∫
R
Φ(u) du)(η) =

∫
R
S(Φ(u))(η) du. If Φ is

(S)∗-di�erentiable over R then for all η in S (R), S[dΦdt (t)](η) =
d
dt

[
[SΦ(t)](η)

]
.

For any Φ in (S)∗ and k in N
∗
, let Φ⋄k

denote the element

k times︷ ︸︸ ︷
Φ ⋄ · · · ⋄ Φ of (S)∗. One 
an generalize

the de�nition of exp⋄ to the 
ase where Φ belongs to (S)∗. Indeed, for any Φ in (S)∗ su
h that the sum

+∞∑
k=0

Φ⋄k

k! 
onverges in (S)∗, de�ne the element exp⋄ Φ of (S)∗ by setting exp⋄ Φ :=
+∞∑
k=0

Φ⋄k

k! . It is 
alled Wi
k

exponential of Φ.
For f in L2(R) and Φ := 〈·, f〉, it is easy to verify that exp⋄ Φ exists and 
oin
ides with : e〈·,f〉 : de�ned

at the beginning of this se
tion.

4.1.1 Fra
tional and multifra
tional white noise

Operators MH and

∂MH

∂H .

Let H belong to (0, 1). Following [31℄, the operator MH is de�ned in the Fourier domain by

◊�MH(u)(y) :=
√
2π

cH
|y|1/2−H û(y), ∀y ∈ R

∗.

This operator is well de�ned on the homogeneous Sobolev spa
e of order 1/2−H noted L2
H(R) and de�ned

by L2
H(R) := {u ∈ S ′(R) : û = Tf ; f ∈ L1

loc(R) and ‖u‖H < +∞}. The norm ‖ · ‖H derives from the inner

produ
t 〈·, ·〉H de�ned on L2
H(R) by: 〈u, v〉H := 1

c2
H

∫
R
|ξ|1−2H“u (ξ)“v (ξ)dξ where cH is de�ned right after

De�nition 2.1.

The de�nition of the operator

∂MH

∂H is quite similar [47℄. Pre
isely, de�ne, for H in (0, 1), the spa
e

ΓH(R) := {u ∈ S ′(R) : û = Tf ; f ∈ L1
loc(R) and ‖u‖δH(R) < +∞}, where the norm ‖ · ‖δH(R) derives from

the inner produ
t 〈·, ·〉δH de�ned on ΓH(R) by 〈u, v〉δH := 1
c2
H

∫
R
(βH + ln |ξ|)2 |ξ|1−2H “u (ξ) dξ.

The operator

∂MH

∂H , from

(
ΓH(R), 〈·, ·〉δH (R)

)
to

(
L2(R), 〈·, ·〉L2(R)

)
, is de�ned in the Fourier domain by:

ÿ�∂MH

∂H (u)(y) := −(βH + ln |y|)
√
2π

cH
|y|1/2−H û(y), ∀y ∈ R

∗.

Fra
tional and multifra
tional white noise

For any measurable fun
tion h : R → (0, 1), it is easily seen that the pro
ess Bh :=
(
Bh

t

)
t∈R

de�ned by

∀(ω, t) ∈ Ω× R, Bh
t :=

+∞∑

k=0

Ç∫ t

0

Mh(t)(ek)(s)ds

å
〈·, ek〉

is an mBm. Assuming that h is di�erentiable, we de�ne the (S)∗-valued fun
tion Wh := (Wh
t )t∈R

by

Wh
t :=

+∞∑

k=0

ï
d

dt

Å∫ t

0

Mh(t)(ek)(s) ds

ãò
〈·, ek〉. (19)

The following theorem states that, for all real t, the right-hand side of (19) does indeed belong to (S)∗ and

is exa
tly the (S)∗-derivative of Bh
at point t.
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Theorem-De�nition 4.1 ([47, Theorem-de�nition 5.1℄). Let h : R → (0, 1) be a C1
deterministi
 fun
tion

su
h that its derivative fun
tion h′ is bounded. The pro
ess Wh
de�ned by (19) is an (S)∗-pro
ess whi
h

veri�es the following equality (in (S)∗):

Wh
t =

+∞∑

k=0

Mh(t)(ek)(t)〈·, ek〉+ h′(t)
+∞∑

k=0

Å∫ t

0

∂MH

∂H (ek)(s)
∣∣
H=h(t)

ds

ã
〈·, ek〉. (20)

Moreover the pro
ess Bh
is (S)∗-di�erentiable on R and veri�es

dBh

dt (t) =Wh
t in (S)∗.

When the fun
tion h is 
onstant, identi
ally equal to H , we will denoteWH :=
(
WH

t

)
t∈R

and 
all the pro
ess

Wh
fra
tional white noise. This pro
ess was de�ned and studied in [31, 12℄.

4.2 Sto
hasti
 integral with respe
t to mBm

Using the tools presented above, we 
an now re
all the de�nition of the Wi
k-It� integral with respe
t to

mBm from [47℄. Theorem 4.3 in this se
tion will be instrumental to solve the S.D.E. en
ountered later

De�nition 4 (Multifra
tional Wi
k-It� integral). Let Bh
be a normalized multifra
tional Brownian motion

and Y : R → (S)∗ be a pro
ess su
h that the pro
ess t 7→ Yt ⋄Wh
t is (S)∗-integrable on R. The pro
ess Y is

said to be d⋄Bh
-integrable on R or integrable on R with respe
t to mBm Bh

. Moreover, the integral on R of

Y with respe
t to Bh
is de�ned by

∫

R

Ys d
⋄Bh

s :=

∫

R

Ys ⋄Wh
s ds. (21)

For an interval I of R,
∫
I
Ys d

⋄Bh
s :=

∫
R
1I(s) Ys d

⋄Bh
s .

When the fun
tion h is 
onstant over R, equal to H , the multifra
tional Wi
k-It� integral 
oin
ides with

the fra
tional Wi
k-It� integral de�ned in [31℄, [12℄, [9℄ and [10℄. In parti
ular, when Y is adapted and

when the fun
tion h is identi
ally equal to 1/2, (21) is nothing but the 
lassi
al It� integral with respe
t to

Brownian motion.

The multifra
tional Wi
k-It� integral veri�es the following properties:

Proposition 4.2. Let Bh
be an mBm and I be an interval of R.

• For all (a, b) in R
2
su
h that a < b,

∫ b

a
1 d⋄Bh

u = Bh
b −Bh

a almost surely.

• LetX : I → (S)∗ be a d⋄Bh
-integrable pro
ess over I. If

∫
I
Xs d

⋄Bh
s belongs to (L2), then E[

∫
I
Xs d

⋄Bh
s ] =

0.

Multifra
tional Wi
k-It� integral of deterministi
 elements

In order to solve di�erential equations driven by an mBm that will be en
ountered below, it is ne
essary to

know the exa
t nature of multifra
tional Wi
k-It� integrals of deterministi
 elements.

For H in (0, 1) and f in S (R), de�ne the fun
tion gf : R × (0, 1) → R by gf(t,H) :=
∫ t

0
MH(f)(x)dx

where MH is the operator de�ned in at the beginning of Se
tion 4.1.1. It has been shown that gf belongs

to C∞(R × (0, 1),R) (
f. [47, Lemma 5.5℄). The main result on the multifra
tional Wi
k-It� integral of

deterministi
 elements is the following:

Theorem 4.3. ([47, Theorem 5.25℄) Let h : R → (0, 1) be a C1
deterministi
 fun
tion and let f : R → R

be a measurable deterministi
 fun
tion whi
h belongs to L1
lo


(R). Let Z := (Zt)t∈R
be the pro
ess de�ned by

Zt :=
∫ t

0
f(s) d⋄Bh

s . Then Z is an (S)∗-pro
ess whi
h veri�es the following equality in (S)∗

∫ t

0

f(s) d⋄Bh
s =

+∞∑

k=0

Ç∫ t

0

f(s) d
ds [gek(s, h(s))] ds

å
〈·, ek〉. (22)
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Moreover Z is a (
entred) Gaussian pro
ess if and only if

+∞∑
k=0

Ä∫ t

0
f(s) d

ds [gek(s, h(s))] ds
ä2
< +∞, for all t

in R. In this 
ase we have, for every t in R,

Zt =

∫ t

0

f(s) d⋄Bh
s

L∼ N
(
0,

+∞∑

k=0

Ç∫ t

0

f(s) d
ds [gek(s, h(s))] ds

å2
)
. (23)

In parti
ular, Z is a Gaussian pro
ess when f belongs to C1(R;R).

Deriving the quantity E
[
Z2
t

]
in the previous theoremmight be 
ompli
ated using Equation (23). However,

when f is a C1
fun
tion, thanks to the It� formula with respe
t to mBm [47, Theorem 6.9℄, we obtain the

following integration-by-parts formula

∫ t

0

f(s) d⋄Bh
s

(L2)
= f(t) Bh

t −
∫ t

0

f ′(s) Bh
s ds, (24)

whi
h leads to

E
[
Z2
t

]
= f(t)2 t2h(t) +

∫ t

0

∫ t

0

f ′(s) f ′(u) Rh(s, u) ds du− 2f(t)

∫ t

0

f ′(s) Rh(t, s) ds. (25)

Remark 6. The integration-by-parts formula (24) allows to identify almost surely

∫ t

0
f(s) d⋄Bh

s with the

quantity Ift (B
h) where the map Ift : C0([0, t];R) → R is de�ned by

Ift : g 7→
Ç
f(t)g(t)−

∫ t

0

f ′(s)g(s) ds

å
. (26)

4.3 Sto
hasti
 di�erential equations

We solve in this subse
tion the two sto
hasti
 di�erential equations that de�ne the multifra
tional sto
hasti


volatility models presented in Se
tion 5.

4.3.1 Mixed multifra
tional Brownian S.D.E.

Let us 
onsider the following mixed multifra
tional sto
hasti
 di�erential equation, where γ1 and γ2 are

positive 
onstants and Bt is a Brownian motion:

®
dXt = Xt

(
γ1d

⋄Bt + γ2d
⋄Bh

t

)
,

X0 = x0 ∈ R.
(27)

Of 
ourse (27) is a shorthand notation for the equation

Xt = x0 + γ1

∫ t

0

Xsd
⋄Bs + γ1

∫ t

0

Xsd
⋄Bh

s , X0 = x0 ∈ R,

where the previous equality holds in (S)∗. A solution of this equation will be 
alled geometri
 mixed

multifra
tional Brownian motion. Rewriting the previous equation in terms of derivatives in (S)∗, we get:
dXt

dt
= Xt ⋄

Ä
γ1W

1/2
t + γ2W

h
t

ä
, x0 ∈ R. (28)

Theorem 4.4 (Geometri
 mixed multifra
tional Brownian motion). The (S)∗-pro
ess (Xt)t∈[0,T ] de�ned by

Xt := x0 exp
⋄ (γ1Bt + γ2B

h
t

)
, (29)

is the unique solution of (28) in (S)∗.
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Proof: Applying the S-transform to both sides of Equation (28) and denoting by yη the map t 7→ S(Xt)(η),
for every η in S (R), we get:

y′η(t) = yη(t)

Å
γ1M1/2(η)(t) + γ2

d

dt
[gη(t, h(t))]

ã
, yη(0) = x0.

This equation admits a unique solution whi
h veri�es yη(t) = x0 exp {γ1
∫ t

0
M1/2(η)(u)du + γ2

∫ t

0
d
du [gη(u, h(u))]du}.

Using (i) and (ii) of [47, Theorem 5.12℄ we hen
e get, for every η in S (R),

yη(t) = x0 exp {γ1S(Bt)(η) + γ2S(B
h
t )(η)} = S

(
x0 exp

⋄ {γ1Bt + γ2B
h
t }
)
(η).

The inje
tivity of the S-transform allows us to 
on
lude that Xt = x0 exp
⋄ {γ1Bt + γ2B

h
t

}
for every t in

[0, T ]. �

Remark 7. (i) Using [43, Equality (3.16)℄, one sees that X is an (L2)-valued pro
ess that may be represented

as:

Xt = x0 exp
¶
γ1Bt + γ2B

h
t − 1

2

Ä
γ21t+ γ22t

2h(t)
ä©

.

(ii) The theorem is also a 
onsequen
e of [41, Theorem 3.1.2℄.

4.3.2 Mixed multifra
tional Ornstein-Uhlenbe
k S.D.E.

Let us now 
onsider the following mixed sto
hasti
 di�erential equation:

®
dUt = θ(µ− Ut)dt+ (α1 d

⋄Bt + α2 d
⋄Bh

t )

U0 = u0 ∈ R,
(30)

where (Bt)t∈R and

(
Bh

t

)
t∈R

are independent, θ ≥ 0 and µ, α1, α2 belong to R. A solution of this equation

will be 
alled a mixed multifra
tional Ornstein-Uhlenbe
k pro
ess.

Theorem 4.5 (Mixed multifra
tional Ornstein-Uhlenbe
k pro
ess). The L2(Ω)-valued pro
ess (Ut)t∈R de-

�ned by

Ut := u0e
−θt + µ

(
1− e−θt

)
+ α1

∫ t

0

eθ(s−t)d⋄Bs + α2

∫ t

0

eθ(s−t)d⋄Bh
s , (31)

is the unique solution of the sto
hasti
 di�erential equation (30).

Proof: The proof that the pro
ess U de�ned by (31) is the unique solution of (30) is very similar to the one

of Theorem 4.4. Indeed, setting yη(t) := S(Ut)(η) for every (t, η) in R×R and applying the S-transform to

both sides of (30) we get, for every η in S (R), the ordinary di�erential equation

y′η(t) = θ(µ− yη(t)) + α1M1/2(η)(t) + α2
d
dt [gη(t, h(t))], yη(0) = u0. (32)

Its unique solution is

yη(t) = u0e
−θt + e−θt

∫ t

0

eθs
(
θµ+ α1M1/2(η)(s) + α2

d
ds [gη(s, h(s))]

)
ds, yη(0) = u0.

Again, one 
on
ludes using the inje
tivity of the S-transform. �
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4.4 Quantization of solutions of S.D.E. driven by mBm

Quantizing a Gaussian pro
ess X often yields as well a quantization of the solutions of sto
hasti
 di�erential

equations driven by X : indeed, in many 
ases, these solutions may be expressed as fun
tionals of X . A

quantizer of the solution 
an then be obtained by simply plugging the quantizer of X into the fun
tional.

In the one-dimensional setting, under rather general 
onditions on the di�usion 
oe�
ients and if X is

a 
ontinuous semimartingale, this fun
tional is easily determined using the Lamperti transform (see [52℄).

In this 
ase, the 
orresponding quantizer of the sto
hasti
 di�erential equation is obtained by plugging the

Gaussian quantizer in the S.D.E. written in the Stratonovi
h sense, leading to a �nite set of ordinary di�er-

ential equations. This leads to a simple and general 
onstru
tive method to build a fun
tional quantization

of the solution of an S.D.E.

Unfortunately, no su
h result is available in the 
ase of an S.D.E. driven by multifra
tional Brownian

motion (or even by fra
tional Brownian motion). However, in some situations, and in parti
ular when an

expli
it solution is known, one may sometimes still use the pro
edure just des
ribed: if the fun
tional giving

the solution is regular enough, quantization-based 
ubatures 
an then be used. This is for instan
e the 
ase

of geometri
 mixed multifra
tional Brownian motion de�ned in Se
tion 4.3.1, whi
h is a simple fun
tional of

a Brownian motion and a multifra
tional Brownian motion (see Remark 7 and se
tion 3.3.2). We des
ribe

two other favourable situations in the next subse
tions.

4.4.1 The 
ase of a Wiener integral

An easy 
ase is the one of a Wiener integral

∫ t

0
f(s)d⋄Bh

s where f is a C1
deterministi
 fun
tion. The

integration-by-parts formula for mBm (24) reads

∫ t

0
f(s)d⋄Bh

s
a.s.
= f(t)Bh

t −
∫ t

0
f ′(s)Bh

s ds. Thus, for p ≥ 1,

the sto
hasti
 pro
ess t 7→
∫ t

0
f(s)d⋄Bh

s , seen as a random variable valued in Lp(0, T ), is the image of Bh
by

the map

Jf : Lp([0, T ]) → Lp([0, T ])

g 7→ f(·)g(·)−
∫ ·
0
f ′(s)g(s)ds.

In other words we have (dt-almost everywhere) Jf (g)(t) = Ift (g) where I
f
t was de�ned in Remark 6.

Proposition 4.6 (Lp
-regularity of the Wiener map). For every p ≥ 1, the map Jf

is Lips
hitz 
ontinuous

on Lp([0, T ]).

Proof: It is straightforward that for (g1, g2) ∈ Lp([0, T ])2

∥∥∥Jf (g1)− Jf (g2)
∥∥∥
p
≤ ‖f(g1 − g2)‖p +

∥∥∥∥
∫ ·

0

f ′(s)(g1(s)− g2(s))ds

∥∥∥∥
p

≤ (‖f‖∞ + ‖f ′‖∞T ) ‖g1 − g2‖p .

�

In Appendix A, we prove that if h is C1
, the Karhunen-Loève eigenfun
tions of a well-balan
ed mBm Bh

have bounded variations, and thus stationary quantizers of Bh
have bounded variations as well (be
ause

they lie on a subspa
e of L2([0, T ]) spanned by a �nite number of Karhunen-Loève eigenfun
tions, as already

mentioned). In this setting, another integration by parts gives Ift
Ä“Bh
ä
=
∫ t

0
f(s)d“Bh

s where d“Bh
s (ω) stands

for the signed measure asso
iated with the fun
tion of bounded variation s 7→ “Bh
s (ω).

4.4.2 The 
ase of 
ertain simple di�usions

Another easy 
ase is the one of an S.D.E. of the form

Yt = y0 +

∫ t

0

β(s, Ys)ds+Xt, (33)

22



where β(s, y) is assumed to be Lips
hitz 
ontinuous in y uniformly in s. This setting is addressed in [52, p.

20-21℄ (a
tually, in [52℄, the Lamperti transform is used to redu
e a general Brownian di�usion to this 
ase),

where the authors 
onsider the asso
iated integral equation

y(t) = y0 +

∫ t

0

β(s, y(s))ds+ g(t), (34)

where g ∈ Lp([0, T ]) is �xed. The existen
e and uniqueness in Lp([0, T ]) of a solution for the integral

equation (34) follows from the same approa
h used for ordinary di�erential equations. Then the solution of

the asso
iated S.D.E. (33) simply reads Ut = Ψβ
p (X)t, where Ψβ

p : Lp([0, T ]) → Lp([0, T ]) is the fun
tional

that maps g ∈ Lp([0, T ]) to the unique solution in Lp([0, T ]) of Equation (34). In [52℄, the map Ψβ
p is showed

to be Lips
hitz 
ontinuous in Lp([0, T ]). More pre
isely, one has

c([β]
Lip

, T ) ‖g1 − g2‖pp ≤
∥∥∥Ψβ

p (g1)−Ψβ
p (g2)

∥∥∥
p

p
≤ C([β]

Lip

, T ) ‖g1 − g2‖pp ,

with c([β]
Lip

, T ) = 1

2p−1(1−[β]p
Lip

Tp)
and C([β]

Lip

, T ) = e2
p−1[β]

Lip

Tp−1

.

Mixed multifra
tional Ornstein-Uhlenbe
k pro
ess, de�ned in Se
tion 4.3.2, is of the form (34), with

β(s, u) = θ(µ− u) and X = α1B + α2B
h
.

5 Multifra
tional sto
hasti
 volatility models

Subse
tion 5.1 is devoted to a short re
all on implied forward start volatility. In Subse
tions 5.2 and 5.3

we propose two multifra
tional sto
hasti
 volatility models, the multifra
tional Hull & White and the mul-

tifra
tional SABR volatility models. The former generalizes the fra
tional long-memory sto
hasti
 volatility

model presented in [20, Paragraph 2℄ and the latter is an extension of the 
elebrated SABR sto
hasti
 volatil-

ity model [37℄ in the 
ase where β is equal to 1. We propose a numeri
al s
heme based on the fun
tional

quantization of mBm for the 
omputation of the pri
e of forward start options in the two 
ases. For any

ε > 0 we provide an upper bound for the L2−ε
quantization error of the instantaneous volatility pro
ess σ

in the two models.

5.1 The implied forward start volatility

Vanilla option pri
es are typi
ally 
onverted in terms of Bla
k S
holes implied volatility by pra
titioners,

be
ause this quantity 
an be easily interpreted as the 
rude option pri
e. As we devised a numeri
al s
heme

for forward start options, we give here the asso
iated notion of �forward implied volatility�, with a spe
ial

attention be
ause the term �forward volatility� is used for di�erent notions in the literature.

The forward start option pri
e.

LetW be a standard Brownian motion on [0, T ] and τ ∈ (0, T ). Let us 
onsider the sto
hasti
 di�erential
equation dSt = StσtdWt (with (σt)t∈[0,T ] a deterministi
 pro
ess) whose solution is a geometri
 Brownian

motion St = S0 exp
Ä∫ t

0
σsdWs − 1

2

∫ t

0
σ2
s ds
ä
. The forward start Call option pri
e FSPrimeBS(σ, τ, T,K)

is given by

FSPrimeBS(σ, τ, T,K) = E

ñÅ
ST

Sτ
−K

ã

+

ô
= N (d1)−KN (d2),

where d1 := σ
√
T−τ
2 + ln(K)

σ
√
T−τ

, d2 := d1 − σ
√
T−τ
2 and σ2 := 1

T−τ

∫ T

τ
σ2
s ds. In other words, we have

FSPrimeBS(σ, τ, T,K) = PrimeBS(1, σ, T − τ,K), (35)

where (S0,Vol,Mat, Strike) 7→ PrimeBS(S0,Vol,Mat, Strike) is the 
losed-form expression for the vanilla

Call option pri
e in the Bla
k & S
holes model.
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The implied forward start volatility.

In the Bla
k & S
holes model, where the asset pri
e follows a geometri
 Brownian motion with a 
onstant

volatility, the forward start Call (or Put) option pri
e is an in
reasing fun
tion of the volatility (if the strike

is not zero). Conversely, for a given forward start Call (or Put) option pri
e, the Bla
k & S
holes implied

volatility is the unique value of the volatility for whi
h the Bla
k & S
holes formula re
overs the pri
e; in

other words, the implied forward start volatility asso
iated with a given forward F0, a forward start date τ ,
a maturity T > τ , a strike K, and an option pri
e P is de�ned by

P = FSPrimeBS (ImpliedFSVolBS (τ, T,K, P ) , τ, T,K) . (36)

Using Equation (35), this yields

ImpliedFSVolBS (τ, T,K, P ) = ImpliedVolBS (1, T − τ,K, P ) , (37)

where ImpliedVolBS (Fwd,maturity, Strike,Pri
e) is the Bla
k & S
holes implied volatility a 
ertain for-

ward, maturity, strike and option pri
e.

5.2 Multifra
tional Hull & White sto
hasti
 volatility model

We assume that, under the risk-neutral measure, the forward pri
e of a risky asset is the solution of the

S.D.E. ß
dFt = FtσtdWt,
d ln(σt) = θ (µ− ln(σt)) dt+ γhd

⋄Bh
t + γσdW

σ
t , σ0 > 0,

(38)

where θ ≥ 0 and whereW and W σ
are two standard Brownian motions and Bh

is a well-balan
ed multifra
-

tional Brownian motion independent of W and W σ
with fun
tional parameter h assumed to be 
ontinuously

di�erentiable. We assume that W is de
omposed into ρdW σ
t +

√
1− ρ2dWF

t , where WF
is a Brownian

motion independent of W σ
. Hen
e, (38) writes

®
dFt = Ftσt

Ä
ρdW σ

t +
√
1− ρ2dWF

t

ä

d ln(σt) = θ (µ− ln(σt)) dt+ γhd
⋄Bh

t + γσdW
σ
t , σ0 > 0.

(39)

We denote respe
tively by Fσ
, FF

and Fh
the natural �ltrations of W σ

, WF
and Bh

. We de�ne the

�ltration Fσ,h
by Fσ,h

t = σ
(
Fσ

t ,Fh
t

)
and FF,σ,h

by FF,σ,h
t = σ

(
FF

t ,Fσ
t ,Fh

t

)
.

The unique solution of (38) reads

®
Ft = F0 exp

Ä∫ t

0
σsdWs − 1

2

∫ t

0
σ2
sds
ä

σs = exp
(
ln(σ0)e

−θs + µ
(
1− e−θs

)
+ γσ

∫ s

0
eθ(u−s)dW σ

u + γh
∫ s

0
eθ(u−s)d⋄Bh

u

)
.

(40)

In other words, ln(σt) is a mixed multifra
tional Ornstein-Uhlenbe
k pro
ess. Note that, although the

volatility pro
ess is not a semimartingale, the pro
ess (Ft)t∈[0,T ] remains a (positive) FF,σ,h
-lo
al martingale,

and thus a super-martingale. The same proof as in [44℄ shows that, if ρ = 0, this lo
al martingale is indeed

a martingale. Numeri
al experiments seem to indi
ate that this property still holds for ρ < 0, a fa
t that

remains to be proved.

We now 
onsider the problem of pri
ing a forward start 
all option (the put 
ase is handled similarly).

The payo� of this option writes

Ä
FT

Fτ
−K
ä
+
for some �xed maturity τ ∈ [0, T ]. We need to 
ompute the

risk-neutral expe
tation E

[Ä
FT

Fτ
−K
ä
+

]
.

The following de
omposition holds:

Ft = F0 exp

Ç
ρ

∫ t

0

σsdW
σ
s − ρ2

2

∫ t

0

σ2
sds

å

︸ ︷︷ ︸
measurable with respe
t to Fσ,h

t

exp

Ç√
1− ρ2

∫ t

0

σsdW
F
s − 1− ρ2

2

∫ t

0

σ2
sds

å
.
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Conditioning by Fσ,h
T yields

E

[Ä
FT

Fτ
−K
ä
+

]
= E

[
E

[Ä
FT

Fτ
−K
ä
+

∣∣∣Fσ,h
T

]]

= E

[
E

[Ä
Fτ,T exp

Ä√
1− ρ2

∫ t

0
σtdW

F
t − 1−ρ2

2

∫ t

0
σ2
sds
ä
−K
ä
+

∣∣∣Fσ,h
T

]]

= E

[
PrimeBS

(
Fτ,T ,

(
(1− ρ2) 1

T−τ

∫ T

τ

σ2
sds

︸ ︷︷ ︸
=:Iσ

τ,T

) 1
2

, T − τ,K
)]
,

(41)

where Fτ,T := exp
Ä
ρ
∫ T

τ
σsdW

σ
s − ρ2

2

∫ T

τ
σ2
sds
ä
and PrimeBS is the 
losed-form expression for the pri
e of a

Call option in the Bla
k & S
holes model, detailed in Appendix 5.1. The aim is to estimate the expe
tation

(41) by a quantization-based 
ubature asso
iated with the fun
tional quantization of Bh
and W σ

. We thus

need to write the terms Fτ,T and

∫ T

τ
σ2
sds as expli
it fun
tionals of the paths of W

σ
and Bh

in L2([0, T ]).

Re
all that σ is the exponential of a mixed multifra
tional Ornstein-Uhlenbe
k pro
ess:

σt = exp
Ä
ln(σ0)e

−θt + µ
(
1− e−θt

)
+ γσe

−θtIe
θ·

t (W σ) + γhe
−θtIe

θ·

t (Bh)
ä
. (42)

This yields an expli
it fun
tional form for

∫ T

τ
σ2
sds as a fun
tion of the paths of W σ

and Bh
. Denote

(phj )1≤j≤N1 and (χh
j )1≤j≤N1 the weights and the paths of the quantizer

“Bh
of Bh

, and (pσj )1≤j≤N2 and

(χσ
j )1≤j≤N2 the weights and the paths of the quantizer Ŵ σ

of W σ
. Conditionally on Bh = χh

i , one has

Iστ,T = Iσ
i

τ,T , where

Iσ
i

τ,T :=

∫ T

τ

σi
sdW

σ
s

and

σi
t = exp

(
ln(σ0)e

−θt + µ
(
1− e−θt

)
+ γσ

∫ t

0

eθ(s−t)dW σ
s + γhe

−θt Igt
(
χh
i

) )
.

Appendix B shows that χh
i has bounded variations. This entails that σi

is a semimartingale. De�ne

〈σi,W σ〉τ,T := 〈σi,W σ〉T − 〈σi,W σ〉τ , where 〈·, ·〉 denotes the semimartingale bra
ket and let us denote

by

∫ T

τ
σi
s ◦ dW σ

s the Stratonovi
h integral of σi
. Then, Iσ

i

τ,T reads

Iσ
i

τ,T =

∫ T

τ

σi
s ◦ dW σ

s − 1

2
〈σi,W σ〉τ,T .

It�'s formula yields

∫ T

τ

σi
t dW

σ
t =

σi
T − στ
γσ

− 1

γσ

∫ T

τ

σi
tθ
(
µ− ln

(
σi
t

))
dt− γh

γσ

∫ T

τ

σi
tdχ

h
i (t)

︸ ︷︷ ︸
=
∫

T

τ
σi
t ◦ dWσ

t

− γσ
2

∫ T

τ

σi
tdt

︸ ︷︷ ︸
= 1

2 〈σi,Wσ〉τ,T

.

Moreover, ∫ T

τ

“σi
t dŴ

σ
t =

“σi
T − σ̂τ
γσ

− 1

γσ

∫ T

τ

“σi
tθ
Ä
µ− ln

Ä“σi
t

ää
dt− γh

γσ

∫ T

τ

“σi
tdχ

h
i (t).

This shows that

∫ T

τ
σi
t ◦ dW σ

t may be approximated by

∫ T

τ
“σi

t dŴ
σ
t and

∫ T

τ
σi
t dt by

∫ T

τ
“σi
t dt. Thus we

approximate Iσ
i

τ,T by Îσ
i

τ,T :=
∫ T

τ
“σi
sdŴ

σ
s − γσ

2

∫ T

τ
“σi
sds.

The 
ubature formula is then fully expli
it and one �nally obtains the following approximation:
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E

ñÅ
FT

Fτ
−K

ã

+

ô
≈

N1∑

i=1

N2∑

j=1

phi p
σ
jPrimeBS

Ñ
F i,j
τ,T ,

Ç(
1− ρ2

) 1

T − τ

∫ T

τ

(
σi,j(s)

)2
ds

å 1
2

, T − τ,K

é
,

where

F i,j
τ,T = exp

Ç
ρ

∫ T

τ

σi,j(s)dχσ
j (s)− ργσ

1

2

∫ T

τ

σi,j(s)ds− ρ2

2

∫ T

τ

(
σi,j(s)

)2
ds

å
,

and

σi,j(t) := exp
Ä
ln(σ0)e

−θt + µ
(
1− e−θt

)
+ γσe

−θtIe
θ·

t (χσ
j ) + γhe

−θtIe
θ·

t (χh
j )
ä
.

(
ln(σi,j)

)
1≤i≤N1,1≤j≤N2

and (phi p
σ
j )1≤i≤N1,1≤j≤N2 are the paths and weights of a stationary quantizer of

the mixed multifra
tional Ornstein-Uhlenbe
k pro
ess ln(σ). The results stated in Se
tion 4.4.2 allow us to


ontrol its quadrati
 quantization error with the quantization error of Ŵ σ
and

“Bh
. We then apply (13) to

get an upper bound for the L2−ǫ
quantization error of the pro
ess σ on [0, T ], for any ǫ > 0 .

5.3 Multifra
tional SABR model

We 
onsider the 
ase where, under the risk-neutral measure, the forward pri
e of a risky asset is the solution

of the S.D.E. ß
dFt = FtσtdWt,
dσt = σt

(
γhd

⋄Bh
t + γσdW

σ
t

)
, σ0 > 0,

(43)

where W and W σ
are two standard Brownian motions and Bh

is a well-balan
ed multifra
tional Brownian

motion independent of W and W σ
with fun
tional C1

parameter h. We assume that W is de
omposed into

ρdW σ
t +

√
1− ρ2dWF

t , where WF
is a Brownian motion independent of W σ

. We use the same notations as

in the previous se
tion for Fσ
, FF

, Fh
, Fσ,h

and FF,σ,h
. Hen
e, (43) writes

®
dFt = Ftσt

Ä
ρdW σ

t +
√
1− ρ2dWF

t

ä

dσt = σt
(
γhd

⋄Bh
t + γσdW

σ
t

)
, σ0 > 0.

(44)

This is an extension of the SABR model, in when the β parameter is equal to 1. This model 
an be

handled in the same way as the multifra
tional Hull & White model.

The solution of the sto
hasti
 di�erential equation veri�ed by σ, established in Theorem 4.4, is

σt = σ0 exp
⋄ (γσW σ

t + γhB
h
t

)
= σ0 exp

Å
γσW

σ
t + γhB

h
t − 1

2

Ä
γ2σt+ γ2ht

2h(t)
äã

. (45)

Reasoning as in the 
ase of the Hull & White model presented in Se
tion 5.2, it 
an be shown that F is an

FF,σ,h
-martingale for ρ = 0. In addition, the same numeri
al pro
edures as above may be used.

6 Numeri
al experiments

6.1 Varian
e redu
tion method for the quantization-based 
ubature

Here, we present a simple kind of 
ontrol variate method for the quantization-based 
ubature method that

we use, whi
h slightly improves the numeri
al a

ura
y of the method.

Numeri
al experiments 
arried out in [22℄ showed that, in the 
ase of vanilla options, 
omputing the

implied volatility using the estimated forward instead of the theoreti
al forward in the Bla
k & S
holes

formula improves the a

ura
y. The 
ounterpart of this method in the frame of forward start options is to

repla
e the �1� appearing in Formula (37) by the quantity

IN1,N2 :=
∑

1≤i≤N1, 1≤j≤N2

phi p
σ
j F

i,j
τ,T (46)
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This also holds when using Ri
hardson-Romberg extrapolation: in this 
ase, one uses the extrapolated value

of IN1,N2 instead of 1 in Formula (37).

These methods were used to generate the numeri
al results presented below.

6.2 Numeri
al results

We present results on the multifra
tional Hull & White model. We have 
omputed the pri
e as a fun
tion

of strike for di�erent maturities: 1, 2.5, 5 and 10 years. Driving noises were 
hosen in the 
lass of fBms and

mBms. More pre
isely, we display results of our experiments with:

1. An fBm with H = 0.2.

2. An fBm with H = 0.5.

3. An fBm with H = 0.75.

4. An fBm with H = 0.9.

5. An mBm with h = h1 = 0.35 sin
(
2π
10

(
t+ 15

2

))
+ 0.55.

6. An mBm with h = h2 = 0.35 sin
(
2π
5

(
t+ 15

4

))
+ 0.55.

7. An mBm with h = h3 = 0.35 sin
(
6π
5

(
t+ 5

4

))
+ 0.55.

8. An mBm with h = h4 = −0.2 sin
(
6π
5

(
t+ 5

4

))
+ 0.7.

9. And, �nally, an mBm with h =◊�hV olSP , whi
h 
orresponds to the regularity estimated on the S&P 500

tra
e that was analysed in Se
tion 1.

The four fun
tions h1 to h4 are plotted on Figure 6. The values of the other parameters are γh = 0.3,
γσ = ρ = 0 (ex
ept for the experiments displayed on Figure 9), θ = 0.3, µ = ln(0.2), σ0 = 0.2 and F0 = 100.
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Figure 6: left: fun
tions h1 and h4; middle: fun
tion h2; right: fun
tion h3.

The results displayed on Figures 7 and 8 provide an experimental justi�
ation to the 
laims made in the

introdu
tion. Indeed, one sees that, for the short maturity T = 1 year, in the fra
tional Hull & White model

(i.e. with h 
onstant), the smiles are more pronoun
ed for small H and de
rease as H in
rease, while the

reverse is true for all maturities larger than one year (Figure 7). Thus, stronger 
orrelations in the driving

noise do translate in this model into a slower de
rease of the smile as maturities in
rease, as noted in [19℄.

However, with su
h an fBm-based model, an H larger than 1/2 is needed to ensure long-range dependen
e

and thus a more realisti
 evolution of the smile as 
ompared to the Brownian 
ase. As mentioned above, this

is not 
ompatible with empiri
al graphs of the volatility whi
h show a very irregular behaviour, and would

require a small H , a fa
t whi
h was 
on�rmed in Se
tion 1 through an estimation of the lo
al regularity. In

addition, the lo
al regularity of the volatility evolves in time, 
alling for a varying H , i.e. an mBm.
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Another aspe
t is that a �xed H , as in a modeling with fBm, does not allow to 
ontrol independently

the shape of the smiles at di�erent maturities. This is possible with mBm, where the smile at maturity T
depends on a weighted average of the values of h up to time T , as 
an be inferred from equalities (24) and

(40). This is apparent on Figure 8. We have 
ompared fBms and mBms at various maturities T , where H
and h are 
hosen su
h that h(t) = H , or, for the bottom right plot, h1(t) = h4(t). One sees that the shape of
the smile depends on a weighted average of past values of h. For instan
e, in the bottom left plot, the values

of h before T = 2.5 are in average smaller than 0.9, resulting in a �atter smile. The fa
t that a weighted

average must be 
onsidered is apparent on the bottom right plot: indeed, the smile is more pronoun
ed for

h1, although the average from 0 to 5 of this fun
tion is smaller than the one of h4. In 
ontrast, the values

in the immediate past of t = 5 are larger for h1 than for h4, as may be 
he
ked on Figure 6. An adequate


hoi
e of h may thus allow one to better approximate a whole implied volatility surfa
e. This topi
 will be

addressed in a future work.

Figure 9 displays:

• an example with

◊�hV olSP , that regresses the regularity fun
tion of the volatility of S&P 500 estimated

in Se
tion 1,

• an example with ρ 6= 0 and h = h2.

As one 
an see, smiles 
omputed with a regularity fun
tion obtained from market data indeed display all

the features observed empiri
ally as detailed above. We believe this provides a further justi�
ation to the

relevan
e of our model.

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0 50 100 150 200 250 300

H = 0.2

H = 0.5

H = 0.75

H = 0.9

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0 50 100 150 200 250 300

H = 0.2

H = 0.5

H = 0.75

H = 0.9

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0 50 100 150 200 250 300

H = 0.2

H = 0.5

H = 0.75

H = 0.9

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0 50 100 150 200 250 300

H = 0.2

H = 0.5

H = 0.75

H = 0.9

Figure 7: Comparisons of vanilla option volatility smiles for fBm with H = 0.2, H = 0.5, H = 0.7 and

H = 0.9 at di�erent maturities. Top left: T = 1. Top right: T = 2.5. Bottom left: T = 5. Bottom right:

T = 10.
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Figure 8: Comparisons of vanilla option volatility smiles for various fBm and mBm at several maturities.

Top left: fBm with H = 0.9 and mBm with fun
tion h1 at T = 5 (h1(5) = 0.9). Top right: fBm with

H = 0.2 and mBm with fun
tion h2 at T = 5 (h2(5) = 0.2). Bottom left: fBm with H = 0.9 and mBm with

fun
tion h3 at T = 2.5 (h3(2.5) = 0.9). Bottom right: mBm with fun
tion h1 and mBm with fun
tion h4 at
T = 5 (h1(5) = h4(5) = 0.9).
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Figure 9: Vanilla option volatility smiles in the multifra
tional Hull & White model, with γh = 0, γσ = 0.3,

θ = 0.3, µ = ln(0.2), σ0 = 0.2 and F0 = 100, and h = ◊�hV olSP for maturities T = 1, T = 2.5 and T = 5
(left), and with γh = 0.3, γσ = 0.3 ρ = −0.5, θ = 0.3, µ = ln(0.2), σ0 = 0.2 and F0 = 100, and h = h2 for

maturities T = 1, T = 2.5 and T = 5 (right).
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A Variations of the Karhunen-Loève eigenfun
tions of mBm

Let Rh denote the 
ovarian
e fun
tion of a normalized mBm Bh
with fun
tional C1

parameter h and ehk be

the kth Karhunen-Loève eigenfun
tion of Bh
. For k in N, de�ne the map Ik : [0, T ] → R by

Ik(t) :=
∫ T

0
Rh(t, s) e

h
k(s) ds = λhke

h
k, where λ

h
k is the eigenvalue asso
iated with ehk .

Theorem A.1. For every integer k, the map ehk has bounded variations on [0, T ].

Proof: For every �xed (k, t) in N× [0, T ],

Ik(t) =

∫ T

0

c2ht,s

ch(t)ch(s)
t2ht,s ehk(s) ds+

∫ T

0

c2ht,s

ch(t)ch(s)
s2ht,s ehk(s) ds−

∫ T

0

c2ht,s

ch(t)ch(s)
|t− s|2ht,s ehk(s) ds

=: F1(t) + F2(t)− F3(t). (47)

We show that Fi has bounded variations for every i in {1, 2, 3}. The 
ases of F1, F2 and F3 are similar, and

we only treat here F1. Let (ti)0≤i≤N be a sequen
e of elements of [0, T ] su
h that 0 = t0 < t1 < · · · < tN = T .
For any i in {1, · · · , N} we get,

|F1(ti)− F1(ti−1)| ≤

=:K1︷ ︸︸ ︷

sup
s∈[0,T ]

∣∣∣∣∣
ek(s)

ch(s)

∣∣∣∣∣

∫ T

0

∣∣∣∣∣
c2hti,s

ch(ti)
t
2hti,s

i −
c2hti−1,s

ch(ti−1)
t
2hti−1,s

i−1

∣∣∣∣∣ ds

≤ K1

Å ∫ T

0

c2hti,s

ch(ti)

∣∣∣t2hti,s

i − t
2hti−1,s

i−1

∣∣∣ ds
︸ ︷︷ ︸

=:Gi

+

∫ T

0

∣∣∣∣∣
c2hti,s

ch(ti)
−
c2hti−1,s

ch(ti−1)

∣∣∣∣∣ t
2hti−1,s

i−1 ds

︸ ︷︷ ︸
=:Li

ã
. (48)

Sin
e the map (s, t) 7→ c2ht,s

ch(t)
is C1

as soon as h is C1
, the mean-value theorem yields

∣∣∣∣∣
c2hti,s

ch(ti)
−
c2hti−1,s

ch(ti−1)

∣∣∣∣∣ ≤ sup
s∈[0,T ]

|f ′
s(t)| |ti − ti−1| =: K2 |ti − ti−1|,

where f ′
s(t) denotes, for every s in [0, T ], the derivative, at point t, of the map t 7→ c2ht,s

ch(t)
. Setting [H1, H2] :=ï

inf
u∈[0,T ]

h(u), sup
u∈[0,T ]

h(u)

ò
, one gets:

Li ≤ K2 |ti − ti−1|
∫ T

0

t
2hti−1,s

i−1 ds ≤ T (1 +K2) |ti − ti−1|
(
e2H1T + e2H2T

)
=: K3 |ti − ti−1|. (49)

Besides, Gi ≤ sup
(t,s)∈[0,T ]2

∣∣∣∣
c2ht,s

ch(t)

∣∣∣∣
∫ T

0

∣∣∣ti2hti,s − t
2hti−1,s

i−1

∣∣∣ ds =: K4

∫ T

0

∣∣∣t2hti,s

i − t
2hti−1,s

i−1

∣∣∣ ds.

Now, writing

ti
2hti,s − t

2hti−1,s

i−1 = ti
2hti,s − t

2hti,s

i−1︸ ︷︷ ︸
:=Ci(s)

− t
2hti,s

i−1 − t
2hti−1,s

i−1︸ ︷︷ ︸
:=Di(s)

,

we easily get that

∀s ∈ [0, T ], |Ci(s)| ≤ 2H2

∫ ti

ti−1

(
x2H2−1 − x2H1−1

)
dx.
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De�ne the family of maps (gα)α∈R∗

+
from R+ to R+, by gα(x) := αx

if x > 0 and gα(x) := 1 if x = 0. Let

K5 := sup
α∈[0,T ]

| ln(α)| (e2H1 ln(α) + e2H2 ln(α)). The mean-value theorem applied to gα yields

∀s ∈ [0, T ], |Di(s)| ≤ 2−1 K5 |2hti,s − 2hti−1,s | ≤ K5 sup
u∈[0,T ]

|h′(u)| |ti − ti−1| =: K6 |ti − ti−1|.

We hen
e have shown that

∀i ∈ {1; · · · ;N}, Gi ≤
=:K7︷ ︸︸ ︷

(1 + T ) (1 + 2H2) (1 +K4) (1 +K6)

Ç
|ti − ti−1|+

∫ ti

ti−1

(
x2H2−1 − x2H1−1

)
dx

å
.

(50)

Using (49) and (50) we �nally obtain

N∑

i=1

|F1(ti)− F1(ti−1)| ≤ 2K7

Å
1 +

1

2H1

ã (
T + T 2H1 + T 2H2

)
< +∞,

whi
h ends the proof. �
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